发布时间:2016-03-25 15:26 原文链接: PLoSBiol:有性生殖过程可以修补受损的基因组

  原核生物基因组的多样化,是通过从其他的基因组获得的DNA的能力来维持的。然而,在DNA转移的过程中,一些遗传元件可能会感染并入侵基因组。该细菌细胞的自然转化过程的发现,也促进了上个世纪分子生物学的大发展。出人意料的是,一项新的研究表明,原核生物中的有性生殖过程,即其自然转化机制,可以有效地治愈基因组的损伤,抵消之前基因交流过程导致的遗传元件的感染。

  水平基因转移(HGT)是原核生物维持遗传多样性的一个关键因素。在自然种群中,水平基因转移的频率是非常高的,导致物种的基因库中较少有比较高频的核心基因,而有很多非常低频的基因。这些低频的基因造就了原核生物基因组的多样性。这些基因还能够在不同的基因组间转移,作为一种可移动的遗传元件,但是他们更像一种基因组的寄生虫。因此,有特殊特性的水平基因转移往往伴随着(转化过程)代价高昂的可移动遗传元件出现。

  Croucher、Fraser和同事们提出,小片段DNA的重组过程可能构成了转化过程中,细菌基因组遗传物质缺失的基础。天然转化允许环境中的DNA被摄取到细胞。转化过程由专门的受体细胞负责,受体细胞中会表达转化机器,并最倾向于近亲族群间的DNA交换。DNA的到达细胞内时是以单链的形态存在的,如果它不降解,就可以通过同源重组整合进入受体细胞基因组中高度序列相似性的区域。这导致染色体的一小部分与外源DNA之间进行等位基因交换。根据转化DNA和受体基因组之间的序列相似性的程度,以及重组机制的不同,替代重组过程也可能会发生。高相似性的区域侧翼的非同源的DNA,可以通过双同源重组被整合进基因组。混合型的同源和异常重组的序列相似性要求不太严格。这些还会过程导致染色体DNA 的小部分缺失。这些替代重组途径使细菌失去或者获得新的遗传信息。

  进入细菌细胞的外源DNA携带着侧翼的移动元件和核心基因,但如果缺少这些侧翼的移动元件,仅剩的核心基因可以成为模板来删除受体基因组中和核心基因同源的DNA片段。重要的是,这种机制可以有效地删除原核生物种群基因组中的低频DNA片段。入侵受体的移动遗传元件最初在种群中呈现低频状态,这些低频的入侵元件逐渐早原核生物的转化过程中被删除。因此,原核生物的自然转化和基因重组将逐渐导致入侵基因组的遗传元件(或者基因寄生虫)片段被删除掉,比如可以逐渐清除噬菌体、致病性的遗传岛等等。计算机模拟显示,自然转化导致的基因重组甚至可以抵消可移动遗传元件的水平转播。移动元件的删除,对于原核生物来说,可以认为是基因组的一种自清洁过程,让种群的基因库变得更加健康。

  自然转化导致染色体“治愈”模型,可能有助于解释其他塑造原核生物基因组进化的机制,而不仅仅是基因组中的可移动元件的删除。通过同源重组相关的可替代重组导致的基因组删除,可以导致一些可移动元件的清理,可以“治愈”基因组的损伤,可能是原核生物进化出的一种保护机制。最近的几项研究已经表明,该类似于有性生殖的同源重组机制在原核生物功能创新和外来基因驯化等过程中的重要性。该模型可能也适用于解释细胞之间传送小的DNA片段的其他机制。染色体“治愈”模型的深入研究,可能有助于解开他们在生态和进化中的重要影响。

相关文章

因美纳推出5碱基解决方案以驱动多组学发现,开启基因组与表观基因组的同步洞察

• 在美国人类遗传学会(ASHG)年会上,因美纳5碱基解决方案的早期试用客户——伦敦健康科学中心研究所将展示该技术在加速罕见病病例解析方面的强大潜力。• 因美纳专有的5碱基化学技术......

许瑞明研究组合作揭示人逆转座子LINE1靶向整合基因组的重要机制

人类基因组中存在大量具有"跳跃"能力的逆转座子(retrotransposon)序列。在胚胎发育早期、免疫和神经系统等特定阶段和环境下,它们会被激活,发挥重要生理功能;在病毒感染、......

高精度完整基因组助橡胶育种驶入“快车道”

橡胶树是天然橡胶的主要来源。“橡胶树育种面临的主要困难在于周期长和效率低,通过常规育种方法将多抗、高产性状聚合往往需要30~40年。”中国热带农业科学院橡胶研究所研究员程汉告诉《中国科学报》。然而,目......

小麦野生近缘种基因组“密码”被破解

记者宋喜群、冯帆从山东农业大学获悉,该校农学院教授孔令让研究团队首次组装了小麦远缘杂交常用物种中间偃麦草和鹅观草染色体水平的高质量基因组序列,解析了二者基因组结构差异与独立多倍化演化路径,对两者携带的......

烟草分枝发育的“开关基因”被发现

近日,中国农业科学院烟草研究所烟草功能基因组创新团队发现烟草分枝发育“开关基因”,预示着未来作物株型调控有了新靶点。相关研究成果发表在《植物生物技术》(PlantBiotechnologyJourna......

新研究破译薇甘菊入侵基因密码

薇甘菊作为全球十大最具危害的恶性入侵杂草之一,以其惊人的繁殖速度和强大的环境适应性,在亚洲、太平洋地区及中国华南地区造成严重生态破坏。然而,其基因组层面的适应性进化机制长期未被系统解析,制约了科学防控......

研究开发出酵母泛基因组数字模型与代谢网络分析方法

近日,中国科学院大连化学物理研究所研究员周雍进团队与上海交通大学副教授鲁洪中合作,在酵母系统生物学研究中取得新进展。研究团队通过整合分析全球1807株酿酒酵母菌株的基因组与生态位数据,构建了高覆盖度的......

基因组大数据还原野猪横跨欧亚的百万年迁徙历程

近日,中国农业科学院农业基因组研究所农业基因编辑技术创新团队深入解析了中亚野猪种群在跨越欧亚大陆百万年的迁徙历程中适应环境的独特遗传密码,为理解大型哺乳动物如何应对环境变化提供了全新视角。相关研究成果......

基因组密码被解锁:深度学习模型破解非编码区奥秘

人类基因组中超98%的遗传变异位于非编码区,这些变异通过调控染色质可及性、三维构象、剪接加工等多种分子机制影响基因表达,最终导致疾病发生。由于调控机制的复杂性和细胞类型特异性,目前解读非编码变异的分子......

“女娲”基因组计划发布第八项成果

近日,中国科学院生物物理研究所徐涛研究组和何顺民研究组在《基因组、蛋白质组与生物信息学报》杂志发表论文。两位科学家牵头的“女娲”中国人群基因组计划旨在构建中国人群的全基因组数据资源,支撑中国人群的疾病......