发布时间:2019-04-27 17:01 原文链接: QUALITATIVEANALYSISOFDNAFRAGMENTATIONBYAGAROSEGELELECTROPHORESIS

1. Introduction

  • Nuclear morphology changes characteristic of apoptosis appear within the cell together with a distinctive biochemical event: the endonuclease-mediated cleavage of nuclear DNA. In fact, formation of DNA fragments of oligonucleosomal size (180-200 bp) is an hallmark of apoptosis in many cell types.

  • The present protocol provides a method for DNA separation of fragmented and intact DNA fractions and for their analysis by agarose gel electrophoresis. In apoptotic cells specific DNA cleavage becomes evident in electrophoresis analysis as a typical ladder pattern due to multiple DNA fragments. However, although this protocol is simple and generally able to provide good results, it is only qualitative because of its limitations in DNA recovery and solubilization. In order to obtain a cleaner DNA, other methods for DNA preparation are required (in some cases use of proteinase K for deproteinization is recommended).

2. Protocol 
  
 

    2.1. Materials 
  • Cell suspension at 1-5x106 cells/ml in complete RPMI medium (A1)

  •  
  • TTE solution: TE buffer pH 7.4 (A1) with 0.2% Triton X-100 (store at 4°C)

  •  
  • NaCl 5M, ice cold

  •  
  • Isopropanol, ice cold

  •  
  • Ethanol at 70%, ice cold

  •  
  • TE buffer pH 7.4 (A1)

  •  
  • Loading buffer 10x (A1)

  •  
  • TBE buffer for electrophoresis (A1)

  •  
  • Ethidium bromide solution (A1)

  •  
  • Electrophoresis-grade agarose

  •  
  • DNA molecular weight markers

  •  
  • Refrigerated cell centrifuge (A3)

  •  
  • Microfuge (A3)

  •  
  • Heating block (A3)

  •  
  • Gel electrophoresis apparatus (A3)

  •  
  • DC power supply (A3)

  •  
  • UV transilluminator (A3)

  •  
  • Polaroid Camera + films (A3)

  •  
  •  

  • 2.2. Methodology


    • 1. Dispense 0.5 ml of cell suspension (no less than 5x105, otherwise DNA will not be detectable by photography of ethidium bromide stained gel, and no more than 5x106, to avoid difficult handling of too high amounts of insoluble DNA) in tubes labeled B (bottom).

    • 2. Centrifuge cells at 200xg at 4°C for 10 min.

      3. Transfer supernatants carefully in new tubes labeled S (supernatant).

      4. Add to the pellet in tubes B 0.5 ml of TTE solution and vortex vigorously. This procedure allows the release of fragmented chromatin from nuclei, after cell lysis (due to the presence of Triton X-100 in the TTE solution) and disruption of the nuclear structure (following Mg++ chelation by EDTA in the TTE solution).

      5. To separate fragmented DNA from intact chromatin, centrifuge tubes B at 20,000xg for 10 min at 4°C.

      6. Carefully transfer supernatants in new tubes labeled T (top).

      7. Add to the small pellet in tubes B 0.5 ml of TTE solution.

      8. Add to the 0.5 ml volume present in tubes B, S and T, 0.1 ml of ice-cold 5M NaCl and vortex vigorously. The addition of the salt should be able to remove histons from DNA.

      9. Add to each tube 0.7 ml of ice-cold isopropanol and vortex vigorously.

      10. Allow precipitation to proceed overnight at -20°C. This step can be shortened by putting samples in a bath of ethanol/dry ice for 1 hr.

      11. After precipitation, recover DNA by pelleting for 10 min at 20,000xg at 4°C.

      12. Discard supernatants by aspiration or by rapidly inverting tubes and carefully remove any drops or fluid remaining adherent to the wall of the tube with a paper towel corner. This can be a critical step because the pellet could be loosen and transparent, hard to be seen.

      13. Rinse the pellets by adding to each tube 0.5-0.7 ml of ice-cold 70% ethanol.

      14. Centrifuge tubes at 20,000xg for 10 min at 4°C.

      15. Discard supernatants by aspiration or by rapidly inverting tubes. Carefully remove any drops or fluid remaining adherent to the wall of the tube by inverting tubes over an absorbent paper towel for 30 min. Let air dry the tubes in upright position for at least 3 hr before proceeding.

      16. Dissolve DNA by adding to each tube 20-50 m l of TE solution and place the tubes at 37°C for 1-3 days. The redissolution of DNA may be a crical step, in fact it depends on the DNA quantity and size present in the samples. Thus, the non-fragmented DNA contained in the B tubes, may need higher volumes of TE and longer incubation times in order to be resuspended.

      17. Mix the samples of DNA with loading buffer by adding 10x loading buffer to a final concentration of 1x. The addition of loading buffer to samples allows to load gel wells more easily and to monitor the run of samples.

      18. Place samples in a heating block at 65°C for 10 min and immediately load 10-20 m l of them to each well of a standard 1% agarose gel containing ethidium bromide 0.5 mg/ml. Appropriate DNA molecular weight markers should be included. Ethidium bromide is a potential carcinogen: wear gloves and handle with care.

      19. Run the electrophoresis in standard TBE buffer after setting the voltage to the desired level. During electrophoresis it is possible to monitor the migration of samples by following the migration of bromophenol blue dye contained in the loading buffer.

      20. Stop the electrophoresis when the dye reaches about 3 cm from the end of the gel.

      21. To visualize DNA, place the gel on a UV transilluminator and take photos of the gel. Wear eye and skin protection when UV are on. 
       

  •  


相关文章

DNA搜索引擎MetaGraph研发成功

瑞士苏黎世联邦理工学院科学家在最新一期《自然》杂志上发表论文称,他们开发出一款名为MetaGraph的DNA搜索引擎,能快速、高效地检索公共生物学数据库中的海量信息,为研究生命科学提供了强大的专业工具......

破解人脑独特性的关键DNA片段发现

究竟是什么让人脑与众不同?美国加州大学圣迭戈分校研究团队发现了一个名为HAR123的小型DNA片段,这将是解开人类大脑独特性之谜的关键。相关研究成果发表于新一期《科学进展》杂志。最新研究表明,HAR1......

破解人脑独特性的关键DNA片段发现

究竟是什么让人脑与众不同?美国加州大学圣迭戈分校研究团队发现了一个名为HAR123的小型DNA片段,这将是解开人类大脑独特性之谜的关键。相关研究成果发表于新一期《科学进展》杂志。最新研究表明,HAR1......

科学家开发出超大片段DNA精准无痕编辑新方法

基因组编辑技术作为生命科学领域的一项重要突破,为基础研究和应用开发提供了技术支撑。以CRISPR及其衍生技术为代表的编辑系统通过可编程的向导RNA引导Cas9等核酸酶靶向基因组特定位点,被广泛应用于特......

在动物大脑中直接修复DNA——神经科学研究新突破系列之一

神经元中基因编辑的插图。图片来源:杰克逊实验室哪怕在五年前,人们也会认为在活体大脑中进行DNA修复是科幻小说中才有的情节。但现在,科学家已能进入大脑、修复突变,并让细胞在整个生命周期中维持住这种修复效......

古DNA为揭示早期埃及人遗传多样性提供新线索

国际知名学术期刊《自然》北京时间7月2日夜间在线发表一篇基因组学论文称,研究人员从上埃及Nuwayrat地区一个古王国墓葬中提取到一名古埃及个体的全基因组测序数据,这些数据分析可追溯至古埃及第三至第四......

古DNA揭示埃及人祖先

在一项研究中,科学家对埃及一座墓葬中的一名古埃及人进行了全基因组测序。这些数据可追溯至古埃及第三至第四王朝,揭示了其与北非及中东地区,包括美索不达米亚古人群的亲缘关系,为早期埃及人的遗传多样性研究提供......

这一分子工具有望成基因调控新“秘钥”

近年来,环状单链DNA(CssDNA)因其稳定性高、免疫原性弱、可编程性强,成为基因调控、细胞治疗等医学合成生物学领域很有潜力的分子工具之一。近期,中国科学院杭州医学研究所研究员宋杰团队针对此前开发的......

天大学者提出全新DNA存储系统

随着信息技术的飞速发展,传统存储方式已经逐渐无法满足大数据时代的需求。在此背景下,DNA信息存储技术应运而生,通过利用DNA分子存储数据,已经被视为未来大规模数据存储的潜力介质。每克DNA能够存储数百......

我国研发全新的DNA存储系统HELIX60MB生物医学图像存入DNA!

近日,我国科研人员在DNA存储领域取得新突破,研发了一种全新的DNA存储系统——HELIX,该系统专门用于存储生物医学数据,并成功实现了60MB的时空组学图像的存储与恢复。这一科研成果由天津大学应用数......