发布时间:2019-03-20 16:17 原文链接: RNA为模板首次实现植物同源重组修复

  中国农业科学院作物科学研究所作物转基因技术与应用创新团队与美国加州大学圣地亚哥分校合作,使用核糖核苷酸(RNA)作为同源重组修复(HDR)的模板,成功获得后代无转基因成分的抗ALS抑制剂类除草剂水稻植株。这是在植物中首次成功利用RNA作为脱氧核糖核酸(DNA)同源重组修复模板。相关研究论文北京时间3月19日凌晨在线发表于国际学术期刊《自然生物技术》。

  论文通讯作者、作科所研究员夏兰琴介绍,CRISPR/Cas基因组编辑技术自2012年被发明以来,已被广泛应用于动物、植物和微生物等诸多物种的基因组编辑。基因组编辑技术中,首先是Cas核酸内切酶在指导RNA引导下,在基因组特定位置进行切割,导致这些靶向位置的DNA双链断裂(DSB),此种DNA损伤可被细胞中的两种修复途径所修复。在多数物种中,非同源末端连接的修复途径是DNA双链断裂最主要的修复途径,而通过同源重组修复途径(HDR)的概率特别低,无法高效将足量的修复模板(DRT)递送到植物细胞。在植物中实现高效率的同源重组,并用于农作物中优异等位基因替换和重要农艺性状改良,还面临巨大挑战。

  研究人员首先利用微滴数字PCR对重组事件进行评估,证实了RNA作为同源重组修复模板,参与CRISPR/Cpf1系统介导的DNA同源重组修复的可行性。与通常使用的DNA修复模板不同,RNA修复模板可以在体内通过植物自身的转录系统持续产生,为同源重组修复提供足够的修复模板。研究人员又利用此方法,成功获得OsALS两个氨基酸定点替换成功的抗ALS抑制剂类除草剂水稻植株,且通过子代分离得到了定点替换成功且无外源转基因成分的植株。

  据悉,通常情况下,农作物地方品种或近缘属种中,含有大量优异农艺性状等位基因。和常规栽培品种相比,这些优异等位基因只存在单个碱基或者多个碱基差异。通过常规育种方法引入这些基因或优异性状,需要多年多代回交和杂交及材料选育,费时费力。通过CRISPR/Cas介导的同源重组技术,可快速引入优异等位基因,实现常规栽培品种相应等位基因的精准改良,进而加快定向创制农作物新种质的育种进程,对于农作物育种改良具有重要意义。

相关文章

浙大揭示新冠病毒RNA非编码区域与宿主蛋白质互作网络

近日,浙江大学生命科学研究院冯新华、蒋超、任艾明、杨兵实验室在美国微生物协会(AmericanSocietyforMicrobiology)旗下的期刊mSystems杂志上合作发表了题为“High-s......

人工智能新模型实现精准RNA靶向和基因调控

据发表在最新一期《自然·生物技术》杂志上的新研究,美国研究人员开发了一种人工智能模型,可预测RNA靶向CRISPR工具的脱靶活性。该模型可精确地设计向导RNA并调节基因表达,这些精确的基因控制可用于开......

开发下一代RNA药物,Orbital公司完成2.7亿美元A轮融资

日前,OrbitalTherapeutics 公司宣布完成了令人惊讶的2.7亿美元A轮融资,用于RNA工具和下一代RNA药物的研发,同时还引入了两位新高管——NiruSubramanian和......

默沙东大举押注,环状RNA明星公司Orna要做什么?

默沙东正在深入研究RNA药物制造,周二宣布与生物技术初创公司OrnaTherapeutics达成一项交易,希望能够开发出多种新药和疫苗。通过这笔交易,默沙东将先向Orna支付1.5亿美元预付款,并将在......

移动疫苗打印机问世!

为所有需要疫苗的人接种并非易事。许多疫苗需要冷藏,因此很难将它们运送到缺乏基础设施的偏远地区。24日发表在《自然·生物技术》上的一项研究提出了一个解决方案,美国麻省理工学院科学家成功研制出一种可一天内......

科研家提出环形RNA全长转录本解析技术

近日,中国科学院北京生命科学研究院赵方庆团队在《自然-实验手册》(NatureProtocols)上,发表了题为Full-lengthcircularRNAprofilingbynanoporeseq......

北京生科院提出环形RNA全长转录本解析技术

4月12日,中国科学院北京生命科学研究院赵方庆团队在《自然-实验手册》(NatureProtocols)上,发表了题为Full-lengthcircularRNAprofilingbynanopore......

MolCell:施一公团队解析人类pretRNA剪接机制

长久以来,剪接体的调控机理是怎样的,它们在细胞内部的动态组合和变化是怎样的,深深地吸引着科学家们的研究兴趣,但其神秘的面纱一直未被揭开。2023年4月6日,西湖大学施一公团队在 Molecu......

分子机器的“秘密武器”曝光

核糖核酸(RNA)的用处非常多,但它们也会出“故障”。控制RNA并不容易,不过人体细胞自带分子机器,可在正确的时间和地点处理RNA。大多数分子机器都配备了一个“马达”来产生解开RNA分子所需的能量,但......

分子机器的“秘密武器”曝光

核糖核酸(RNA)的用处非常多,但它们也会出“故障”。控制RNA并不容易,不过人体细胞自带分子机器,可在正确的时间和地点处理RNA。大多数分子机器都配备了一个“马达”来产生解开RNA分子所需的能量,但......