发布时间:2023-05-04 14:28 原文链接: ROS检测方法总结

活性氧(reactive oxygen species,ROS)指来源于氧的自由基和非自由基,包含了超氧阴离子(O2•-)、过氧化氢(H2O2)、羟基自由基(•OH)、臭氧(O3)和单线态氧(1O2)等,由于它们含有不成对的电子,因而具有很高的化学反应活性。

ROS在细胞生命,应激和死亡中具介导作用,并且不同浓度的ROS在其中起着截然不同的作用,从而导致细胞命运的不同。因此,非常有必要对ROS的浓度或相对水平进行可靠的测量。

1、电子顺磁共振技术(EPR)

2、荧光染色法

3、化学发光法

4、色谱方法

5、分光光度法

6、电化学生物传感器

7、基于荧光蛋白的方法

1、电子顺磁共振技术 ( electron paramagnetic resonance , EPR )

EPR是一种检测自由基的波谱学方法,是明确评估生物系统中以氧气为中心的自由基生成的“金标准”。由于O2•-,•OH反应活性高、寿命短EPR信号不易直接检出, EPR与自旋捕获技术( spin tranps )相结合可弥补这一缺陷。首先自旋电子捕获剂与自由基发生反应生成EPR易检的相对稳定的自由基附加生成物,然后用EPR技术进行测定。它是一种功能强大且可靠的技术,可以明确地测量生物样品中的O2•-,•OH和NO。

2、荧光染色法

荧光探针通常对氧化剂敏感,并且在被氧气氧化之前是非荧光性的。使用最广泛的成员是二氢乙啶(DHE),二氯二氢荧光素(DCFH-DA)和Amplex Red(尽管细胞不可渗透)。细胞可渗透的物质有助于反映细胞区室的氧化状态,提供有关刺激下自由基产生的信息。这些探针大多数通过单电子自由基机理被氧化,产生探针自由基中间体并产生荧光产物。DHE能够进入细胞并被细胞内O2•-氧化形成特定的红色荧光2-羟基乙啶(2-OH-E+),或可以被其他氧化剂(•OH, H2O2, or OONO-)氧化生成非特定的红色荧光乙锭(E+),2-OH-E+和E+均可通过基于荧光的技术任意捕获。DCFH-DA通常用于直接测量细胞内的氧化还原状态。它能够进入细胞并被酯酶水解成不可渗透膜的DCFH,它可以在内部扩散并被非特定的氧自由基氧化,从而通过非荧光的中间自由基DCFH生成荧光的DCF。Amplex Red用于检测过氧化氢。

3、化学发光法

化学发光分析通常用于超氧化物的检测。与荧光分析类似,化学发光探针对自由基敏感,易于操作。探针可以与O2•-形成光子,并由光度计吸收计数器捕获,而无需使用激发光光源。反应涉及多个步骤,并且探针自由基中间体在该机制中也起着关键作用,因此发光探针的局限性也与荧光探针类似。常用的化学发光试剂有鲁米诺( luminol )、光泽精( lucigenin )、甲壳动物荧光素(如海萤荧光素)等。

4、色谱方法

色谱法用于羟基自由基及其反应产物的分离和鉴定。•OH与特定的试剂反应,生成可通过色谱分析检测到的稳定化合物,其中通常使用液相色谱及其与质谱的组合。通常用于稳定自由基的试剂是苯甲酸,水杨酸和DMSO。水杨酸与羟基自由基反应生成的2,3-二羟基苯甲酸(2,3-DHBA)和2,5-二羟基苯甲酸(2,5-DHBA)通过HPLC并使用电化学检测器进行定量,证明此方法可用于体内测量羟基自由基。基于HPLC的方法已应用于许多反应系统和组织中的羟基自由基或抗氧化剂活性的检测

5、分光光度法

分光光度法是检测ROS的悠久方法。它们基于自由基和氧化还原物质之间的反应而起作用,并且底物和产物之间在不同波长下的吸光度差异使自由基的半定量化成为可能。最常用的方法有细胞色素C ( cytochrome C )的O2•-还原法和氮篮四唑( nitro blue tetrazolium , NBT )还原法。

6、电化学生物传感器

由金丝电极上的细胞色素c和聚苯胺(磺酸)的交替层形成的电化学生物传感器(如下图)用于超氧化物的定量。

7、基于荧光蛋白的方法

基于荧光蛋白的氧化还原探针是通过荧光蛋白(FPs)和原核氧化还原敏感蛋白的组合而设计的。重组蛋白通过质粒或腺病毒被引入细胞,并靶向亚细胞器,从而报告某些区域的氧化还原状态。重组蛋白的氧化还原依赖性荧光光谱变化是通过在氧化条件下二硫键和部分主链的结构变化实现的。

相关文章

超声触发的新型肿瘤治疗新方法

压电材料产生电荷直接作用于介质或促进活性氧(ROS)的产生,从而实现超声触发的新型肿瘤治疗。声动力学治疗(SDT)是利用低强度超声和声敏化剂产生抗肿瘤效应的治疗方法,具有很强的组织穿透性、时空可控性和......

RedoxBiology:特异性抑制NADPH氧化酶2修饰慢性癫痫

活性氧(ROS)是重要的细胞间信号分子,其水平取决于ROS产生酶的活性和细胞的抗氧化能力。在生理条件下,ROS的生成和抗氧化剂的可用性之间存在稳定的平衡。当ROS水平超过细胞抗氧化防御时,就会产生氧化......

揭示了ROS调控植物硝态氮信号转导的分子机制

活性氧(Reactiveoxygenspecies,ROS)是植物在进行有氧代谢过程中不可避免的副产物,在遭遇逆境胁迫时大量积累,抑制植物生长,所以长期以来ROS被认为是一类毒害分子。但近年来的研究发......

细胞ROS和线粒体ROS的区别是什么

活性氧(ROS)是含氧的化学反应性化学物质。实例包括过氧化物,超氧化物,羟基自由基,单线态氧,和α-氧。在生物学背景下,ROS形成为氧的正常代谢的天然副产物,并且在细胞信号传导和体内平衡中具有重要作用......

我国学者破解浅水湖泊水体中植物残体降解机理

水生植物是湖泊生态系统中的重要组分,在净化水质、恢复水体生态功能等方面发挥重要作用。随着全球气候变暖、湖泊富营养化、沼泽化过程以及生态修复技术的推广运用,促进了湖泊中浅水区域中挺水等高等水生植物的生长......

Science挑战传统观点:ROS到底是促发还是抑制先兆子痫

多达8%的孕妇会发生被称为先兆子痫的病症,这种疾病的特征是孕妇子宫血管收缩,阻碍给胎儿输送血液和氧气。之前的研究活性氧(ROS)在启动这种无法治疗的处境方面发挥了作用,由于先兆子痫在全球孕产妇死亡率高......

活性氧与肿瘤

活性氧(ROS)是近年来基础医学和生命科学领域研究的热点。大量研究发现,ROS不仅参与细胞凋亡、坏死,还可参与细胞间信号转导,影响基因的表达,从而促进细胞的增殖分化,导致细胞凋亡减少或增殖过度而易引发......

南京土壤所植物铵毒害机制研究取得进展

铵态氮和硝态氮是植物最主要的两种无机氮源,但是过量铵态氮对植物细胞具有毒害作用。铵态氮的这一特性被认为是植物高效利用铵态氮的重要限制因子。然而人们对植物铵毒害机制的认识还很初步。随着分子生物学技术的发......