发布时间:2019-08-03 22:50 原文链接: RegulationofMAPKinasePathwaysThroughDualSpecificityPhosphatases

Mitogen-activated protein (MAP) kinases are important players in signal transduction pathways activated by a range of stimuli and mediate a number of physiological and pathological changes in cell function. There are three major subgroups in the MAPK family: ERK, p38, and JNK/SAPK. ERK is activated mainly by mitogenic stimuli, whereas p38 and JNK/SAPK are activated mainly by stress stimuli or inflammatory cytokines. MAP kinases are part of a three-tiered phosphorylation cascade and MAP kinase phosphorylation on a threonine and tyrosine residue located within the activation loop of kinase subdomain VIII results in activation. However, this process is reversible even in the continued presence of activating stimuli, indicating that protein phosphatases provide an important mechanism for MAP kinase control. Dual specificity phosphatases (DSP’s) from tyrosine phosphatase (PTP) gene superfamily are selective for dephosphorylating the critical phosphothreonine and phosphotyrosine residues within MAP kinases. Ten members of dual specificity phosphatases specifically acting on MAPKs, termed MAPK phosphatases (MKPs), have been reported. They share sequence homology and are highly specific for MAPK’s but differ in the substrate specificity, tissue distribution, subcellular localization, and inducibility by extracellular stimuli. MKPs have been shown to play important roles in regulating the function of the MAPK family. DSP gene expression is induced strongly by various growth factors and/or cellular stresses. Expression of some gene family members, including CL100/MKP-1, hVH-2/MKP-2, and PAC1, is dependent at least in part on MAP kinase activation providing negative feedback for the inducing MAP kinase or for regulatory cross talk between parallel MAP kinase pathways. DSPs are localized to different subcellular compartments and certain family members appear highly selective for inactivating distinct MAP kinase isoforms. This enzymatic specificity is due to catalytic activation of the DSP phosphatase after tight binding of its amino-terminal to the target MAP kinase. Thus, DSP phosphatases provide a sophisticated mechanism for targeted inactivation of selected MAP kinase activities.

Contributor: A. Konev, PhD

REFERENCES: Camps M et al. Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J. 2000;14(1):6-16. Theodosiou A, Ashworth A. MAP kinase phosphatases. Genome Biol. 2002; 26;3(7)


相关文章

科学家将人工智能技术成功用于蛋白质复合物结构预测

蛋白质作为构成人体组织器官的支架和主要物质,在人体生命活动中起着重要作用。蛋白质的相互作用能产生许多效应,如形成特异底物作用通道、生成新的结合位点、失活、作用底物专一性和动力学变化等,细胞的代谢、信号......

发力癌症分子病理诊断,无锡臻和全资收购TissueofOrigin®

2021年9月9日,无锡臻和生物科技有限公司(以下简称“臻和科技”)与美国VyantBio公司签署TissueofOrigin®(以下简称“TOO®”)全球权益和ZL转让协议,全资收购这款唯一获FDA......

这3个杂志撤回中国学者249篇文章,包含上交、中山等名校

2021年7月20日,JournalofCellularPhysiology及JournalofCellularBiochemistry同时撤回了中国学者49篇文章。从2019年开始,Journalo......

肿瘤治疗的强心剂,中国学者开发肿瘤治疗新策略

磷酸甘油酸突变酶1(PGAM1)通过其代谢活性以及与其他蛋白质(例如α平滑肌肌动蛋白(ACTA2))的相互作用,在癌症代谢和肿瘤进展中起关键作用。变构调节被认为是发现针对PGAM1的高选择性和有效抑制......

llumina宣布推出新型基因分型芯片|支持AllofUs研究计划

2018年12月6日,来自圣迭戈的消息——Illumina公司(纳斯达克股票代码:ILMN)今天宣布推出新型高密度基因分型芯片Infinium™GlobalDiversityArray。这款芯片设计源......

SDSPAGE异常电泳现象及分析SDSPAGEHallofShame

SDS-PAGE异常电泳现象及分析SDS-PAGEHallofShame.pdf  很不错的东东~~推荐下~......

Preparationofdenaturing6%

Preparationofdenaturing6%polyacrylamidegelsformicrosatelliteanalysis(alsoforSSAP,high-resolutionIRAP......