发布时间:2019-08-03 22:16 原文链接: RegulationoftranscriptionalactivitybyPML

The PML nuclear bodies are ring-shaped nuclear substructures associated with the regulation of transcription, transformation, cell growth, and apoptosis and are characterized by the presence of the protein PML. The activities of PML as a tumor suppressor and apoptosis inducing factor are exerted through the numerous proteins it interacts with in the PML-nuclear bodies including the tumor suppressor p53. DNA damage induced activation of p53-dependent apoptosis requires PML. PML acts as a coactivator for p53 and increases acetylation of p53 by the transcriptional coactivator CBP. This acetylation of p53 is reversed by the deacetylase SirT1, the human homolog of the yeast gene Sir2, and this deacetylation opposes the transcriptional activation of p53. The tumor suppressor Rb also interacts with the PML nuclear body, increasing transcriptional repression of genes involved in cell cycle progression, suggesting that PML may affect cellular transformation through more than one mechanism. PML interacts directly with Ubc9, which modifies PML through the attachment of the ubiquitin-like peptide Sumo-1 (see SUMO pathway). Sumo-1 modification of PML is not necessary for the nuclear bodies to form, but may affect the recruitment of proteins that interact with PML. PML is involved in non-p53 mediated apoptotic pathways, such as DAXX-mediated apoptosis induced by Fas and TNF and regulates the transcriptional repressor activity of Daxx. The sequestration of Daxx by the PML nuclear bodies relieves the repression of other transcription factors like Pax3 by Daxx. Tumor suppression by PML may in general involve the formation of specific regulatory transcription complexes, including those with DAXX, p53 and CBP.Factors that affect the assembly of PML into the PML nuclear bodies affect the proliferation and transformation of cells. Viral early proteins can interact with PML to disrupt the nuclear bodies, allowing increased proliferation of cells and reduced apoptosis, good conditions for DNA virus infection. Another factor that disrupts the formation of PML nuclear bodies is a translocation between the PML and RAR-alpha genes found in acute promyelocytic leukemia (APL) patients. Binding of retinoic acid to the RAR-alpha steroid hormone receptor activates transcription of retinoic-acid responsive genes. The translocation found in APL patients creates two chimeric proteins, RARalpha-PML and PML-RARalpha. Retinoic acid given to APL patients causes the reappearance of nuclear bodies, and the reversal of cellular transformation, effecting a cure for these patients.

Contributor:

REFERENCES: Appella E, Anderson CW, (2001) Eur. J. Biochem 268:2764-2772. Post-translational modifications and activation of p53 by genotoxic stresses. Kelly LM, et al. PNAS (2002) June 11 99(12): 8283-8288. PML/RARa and FLT3-ITD induce an APL-like disease in a mouse model. Lehembre F, Muller S, Pandolfi PP, Dejean A. (2001) Oncogene Jan 4 20(1):1-9. Regulation of Pax3 transcriptional activity by SUMO-1-modified PML. Muller S, Dejean A. (1999) J Virology, June5137-5143. Viral Immediate-Early Proteins Abrogate the Modification by SUMO-1 of PML and Sp100 Proteins, Correlating with Nuclear Body Disruption. Salomoni P., Pandolfi P. (2002) Cell. 108):165-170. The Role of PML in Tumor Suppression Zhong S, et al. (2000) Blood. 95(9):2748-2753. Role of SUMO-1 modified PML in nuclear body formation.


相关文章

科学家将人工智能技术成功用于蛋白质复合物结构预测

蛋白质作为构成人体组织器官的支架和主要物质,在人体生命活动中起着重要作用。蛋白质的相互作用能产生许多效应,如形成特异底物作用通道、生成新的结合位点、失活、作用底物专一性和动力学变化等,细胞的代谢、信号......

发力癌症分子病理诊断,无锡臻和全资收购TissueofOrigin®

2021年9月9日,无锡臻和生物科技有限公司(以下简称“臻和科技”)与美国VyantBio公司签署TissueofOrigin®(以下简称“TOO®”)全球权益和ZL转让协议,全资收购这款唯一获FDA......

这3个杂志撤回中国学者249篇文章,包含上交、中山等名校

2021年7月20日,JournalofCellularPhysiology及JournalofCellularBiochemistry同时撤回了中国学者49篇文章。从2019年开始,Journalo......

肿瘤治疗的强心剂,中国学者开发肿瘤治疗新策略

磷酸甘油酸突变酶1(PGAM1)通过其代谢活性以及与其他蛋白质(例如α平滑肌肌动蛋白(ACTA2))的相互作用,在癌症代谢和肿瘤进展中起关键作用。变构调节被认为是发现针对PGAM1的高选择性和有效抑制......

llumina宣布推出新型基因分型芯片|支持AllofUs研究计划

2018年12月6日,来自圣迭戈的消息——Illumina公司(纳斯达克股票代码:ILMN)今天宣布推出新型高密度基因分型芯片Infinium™GlobalDiversityArray。这款芯片设计源......

SDSPAGE异常电泳现象及分析SDSPAGEHallofShame

SDS-PAGE异常电泳现象及分析SDS-PAGEHallofShame.pdf  很不错的东东~~推荐下~......

Preparationofdenaturing6%

Preparationofdenaturing6%polyacrylamidegelsformicrosatelliteanalysis(alsoforSSAP,high-resolutionIRAP......