原肠胚形成(gastrulation)是发育中的里程碑事件,它涉及早期胚胎发生中出现的一系列复杂的分子、物理和能量重塑转变。不同物种间的这种转变过程各不相同,导致地球上动物形态的多样性。由于技术和伦理上的限制,灵长类动物原肠胚形成的分子和细胞机制尚不清楚。缺乏处于原肠胚形成阶段的灵长类动物胚胎样品限制了科学家们对灵长类动物中这一关键事件的理解。
近期,人类胚胎在体外培养了12到13天。许多政府和国际组织建议不要让人类胚胎在体外培养超过14天。因此,有理由期待对非人灵长类动物胚胎模型系统的分析将阐明原肠胚形成机制,并有望阐明人类发育以及早期发育过程中出现的过程异常如何导致发育缺陷和疾病。
猴子长期以来被认为是一种可靠的研究人类生理和病理事件的动物模型,这是因为它们在基因组和形态学特征上与人类高度相似。在两项新的研究中,我国研究人员开发出一种体外培养(in vitro culture, IVC)系统来研究食蟹猴胚胎植入后发育到原肠胚形成阶段和超过原肠胚形成阶段(受精后第9~20天)。相关研究结果发表在2019年11月15日的Science期刊上,论文标题分别为“In vitro culture of cynomolgus monkey embryos beyond early gastrulation”和“Dissecting primate early post-implantation development using long-term in vitro embryo culture”。
在第一项研究中,来自中国科学院的研究人员开发出一种可在受精后长达20天的时间内支持食蟹猴胚胎在体外培养的系统。通过将组织学染色和免疫荧光染色与单细胞RNA测序(RNA-seq)分析相结合,他们发现这些体外培养的猴子胚胎的发育超过了早期的原肠胚形成阶段,并概述了灵长类动物体内胚胎植入后早期发育的关键事件。

猴子胚胎在体内培养超过原肠胚形成阶段,图片来自Science, 2019, doi:10.1126/science.aax7890。
他们利用这种体外培养系统将食蟹猴囊胚(blastocyst)与成熟囊胚腔(blastocoel)一起培养(受精后7~8天)。在受精后第13~14天,有~27.7 ± 3.2%的这些体外培养的胚胎(以下称IVC胚胎)出现双层胚盘(bilaminar disc)样结构(n = 167, 26个实验)。在受精后第15~16天,在光学显微镜下可以清楚地观察到这种双层胚盘状结构。一些胚胎在体外成功发育到受精后第20天。苏木精-伊红染色以及免疫荧光染色证实这些IVC胚胎概述了体内早期胚胎植入后发育的主要特征:上胚层(epiblast)细胞谱系(OCT4+, NANOG+)和下胚层(hypoblast)细胞谱系(GATA6+)的分离;羊膜和卵黄囊腔的形成;推测的原始生殖细胞(SOX17+, TFAP2C+, BLIMP1+)的出现;前后轴的建立(OTX2+细胞的不对称定位);和原肠胚形成(原肠胚形成细胞:T+/OCT4+,VIMENTIN+/T+/OCT4+)。
再者,单细胞RNA测序(RNA-seq)分析显示这些食蟹猴IVC胚胎在基因表达谱和细胞类型方面与体内的食蟹猴胚胎相类似,包括推测的顶叶滋养层细胞(parietal trophoblast)、胚外间充质细胞、植入后早期上胚层细胞(E-EPI)和植入后晚期上胚层细胞(L -EPI)、腔内内胚层(visceral endoderm)细胞、卵黄囊内胚层细胞、早期原始生殖细胞(E-PGC)、早期原肠胚形成细胞(early gastrulating cell, E-Gast)、晚期原肠胚形成细胞1(L-Gast1)和晚期原肠胚形成细胞2(L-Gast2)、早期羊膜细胞(E-AM)以及晚期羊膜细胞1(L-AM1)和晚期羊膜细胞2(L-AM2)。
在第二项研究中,来自我国昆明理工大学、深圳华大基因研究院和中国科学院等研究机构的研究人员开发出一种体外培养系统,它能够在实验室中研究灵长类动物胚胎的生长过程,同时也能帮助研究人员首次观察到胚胎关键发育过程中的分子细节。这项研究是在非人类的灵长类动物细胞中进行的,其对于人类早期发育的研究也具有重要的意义;能提供早期胚胎发育的信息,并提供关键信息来改善人类再生医学的研究进度。
昆明理工大学灵长类转化医学研究所的研究者Weizhi Ji表示,为了理解灵长类动物原肠胚形成过程背后的细胞和分子机制,他们三年前就开始进行了猴子的胚胎培养实验,基于前期研究基础,他们很快实现了目标,这就有望未来帮助人们揭示人类胚胎植入后发育的一些未知信息。文章中,他们想深入研究原肠胚形成的具体过程,当发育中的胚胎转化成为原肠胚结构时这一过程就会发生,原肠胚会演化成为后期胚胎的组织和器官;其中一层会发育成为肺、胃肠道和肝脏;另一层会发育成为心脏、肌肉和生殖器官;第三层将会发育成为皮肤和神经系统;然而,目前研究人员并不清楚在灵长类动物机体中驱动这一过程的细胞和分子因素,这主要是由于研究人员对早期胚胎获取有限所导致的。
这些研究人员表示,他们的目标就是培养出灵长类胚胎并对其发育过程进行研究,并且希望每天能够监测胚胎,观察其形状、大小和迁移模式,以及灵长类动物胚胎在早期发育过程中如何产生不同类型的细胞。为了更好地理解关键的转化过程,他们对此前建立的一种胚胎培养步骤进行修饰来让早期的灵长类胚胎在实验室条件下发育20天。通过这种新的方法,他们,培养的胚胎中的细胞能够显示出通向原肠胚每一层的清晰的发育轨迹,同时研究结果还能揭示胚胎发育所需的一些分子细节;这些数据或能作为一种资源来帮助延长胚胎培养的时间超过20天,以便更好地研究干细胞的分化/特化过程。
这项研究还阐明了对灵长类动物胚胎发育非常关键的调节网络和信号通路,相关研究结果或能帮助科学家们开发更好的策略来在实验室条件下分析灵长类动物在健康和疾病状况下的早期发育特性。
总之,这两项研究建立了一种体外培养系统,它可以支持食蟹猴胚胎在体外的发育超过早期原肠胚形成阶段。这些IVC胚胎概述了体内的灵长类动物胚胎在植入后早期发育的许多关键事件。这种猴子体外培养系统为在未来研究早期胚胎发生的灵长类动物特有的分子特征和机制提供了一种平台,这些分子特征和机制可能与早期发育中出现的人类疾病有关。
上海交通大学医学院研究员洪登礼团队首次揭示了胚胎发育组织保护其干细胞基因组的机制,并证明该机制与发育疾病(如儿童肿瘤)的发生密切相关,将为进一步研究发育疾病的发病学和预防医学提供重要的理论和实验指导;......
以色列魏茨曼科学研究所YonatanStelzer和AmosTanay共同合作,近期取得重要工作进展。他们发现了小鼠胚胎及胚外组织发育中BMP4表达的时序性差异调控机制。相关研究成果2024年9月18......
瑞典卡罗林斯卡学院和荷兰马斯特里赫特大学科学家携手,成功开发出一种新检测技术,能在单次检测中精准筛查出胚胎内所有已知的基因变异。与现有检测方法相比,该技术更准确快捷,为那些有遗传疾病的父母诞下健康宝宝......
科技日报讯(记者刘霞)瑞典卡罗林斯卡学院和荷兰马斯特里赫特大学科学家携手,成功开发出一种新检测技术,能在单次检测中精准筛查出胚胎内所有已知的基因变异。与现有检测方法相比,该技术更准确快捷,为那些有遗传......
据最新一期《自然·遗传学》杂志报道,由多个机构组成的国际“端粒对端粒(T2T)”联盟正在推进“反刍动物端粒-端粒”项目,旨在对300多种反刍动物的基因组进行测序。研究团队期望通过测序得到的基因组图谱,......
动物之间也能共享“文化”?合作狩猎、资源共享和使用相同信号交流相同信息——这些都是在不同动物物种之间观察到的文化共享的例子。科学家在近日发表于《生态和进化趋势》的一项观点文章中,引入了“共同文化”一词......
科技部网站7月8日消息,为规范人类基因组编辑研究行为,促进人类基因组编辑研究健康发展,国家科技伦理委员会医学伦理分委员会研究编制了《人类基因组编辑研究伦理指引》,供相关科研机构和科研人员参考使用。以下......
湖南衡阳南岳衡山国家级自然保护区管理局7月4日透露,该局近日救助一只从树上跌落的猫头鹰幼崽,该猫头鹰学名斑头鸺鹠,是国家二级重点保护野生动物。经工作人员检查,这只斑头鸺鹠因从高处跌落,救助时生命体征十......
近日,华南农业大学动物科学学院教授吴珍芳团队在妊娠早期母胎互作调控猪胚胎着床研究方面取得重要进展,揭示了猪胚胎着床过程中胚胎与母体子宫内膜细胞组分变化、基因时空表达规律以及母胎信号传导新机制。相关成果......
近日,中国科学院华南植物园研究员王法明团队在中国科学院基础研究青年科学家项目、国家自然科学基金等项目的资助下,研究揭示了底栖动物扰动对红树林土壤甲烷排放的影响机制。相关成果发表于《土壤生物学与生物化学......