1月30日,中国科学院生物物理研究所娄继忠课题组与浙江大学基础医学院陈伟课题组合作在《分子细胞》(Molecular Cell)在线发表了题为Mechano-regulation of peptide-MHC class I conformations determines TCR antigen recognition 的研究成果。该论文联合运用分子动力学模拟、单分子力学操纵、分子生物学及免疫学等方法,从原子水平到细胞水平跨尺度揭示了生物力如何通过动态调控抗原呈递分子pMHC-I的构象变化来决定TCR的非我抗原识别过程,阐明了T细胞受体(T cell receptor, TCR)精准特异识别非我抗原的分子机制,为未来寻找肿瘤新生抗原(neoantigen)以及基于新抗原的T细胞免疫治疗提供了基础理论和技术支持。
如何准确快速找到并清除受病原感染的细胞或者基因突变的肿瘤细胞是维护生命体健康的重要保障,人体免疫系统中的CD8+T淋巴细胞(T细胞)在此过程中发挥着至关重要的作用。T细胞主要通过其表面受体TCR特异性识别靶细胞表面MHC-I分子呈递的“非我”或肿瘤新生抗原多肽(激动型),快速触发T细胞杀伤靶细胞的免疫功能。然而,人们体内抗原数目巨大(>1018),种类繁多,而且“非我”抗原和“自我”抗原的差别极小(往往仅相差几个氨基酸)。TCR如何迅速、精准地在浩如烟海的“自我”抗原中找到“非我”抗原是免疫学领域中最核心也是最本质的问题之一,也是未来临床基于T细胞的免疫治疗(特别是TCR-T)的核心之一,但是这种特异性识别的分子机制和结构基础仍不清楚。
近年来的研究发现TCR作为一种生物力的感受器(force sensor)行使其功能,生物力会延长TCR与激动型抗原pMHC-I间的结合时间,形成“逆锁键”(catch bond),而对于非激动型抗原pMHC-I,TCR/pMHC-I结合时间则将被缩短,形成“滑移键”(slip bond),而快速累积“逆锁键”是激活TCR的抗原识别的决定性因素。
该研究中,合作研究团队发现生物力首先通过增强激动型抗原热点残基(hotspot)和TCR的互作,引起TCR-MHC-I分子接触面上若干残基的构象变化,来增强TCR/pMHC的结合强度,进而进一步触发MHC分子的β2m子链与α子链发生部分解离,引起α子链明显的转动构象变化,从而TCR和MHC表面产生了新的互作残基,最终延长了TCR-pMHC-I之间的结合时间,产生“逆锁键”以激活TCR;而对于非激动型抗原,缺少了关键热点残基诱发的生物力增强效果,进而无法产生“逆锁键”,也无法激活TCR。因此,生物力通过引发pMHC-I的构象变化,多部级联放大激动型和非激动型抗原肽的差别,帮助TCR实现精准的抗原识别。进一步研究发现,人MHC-I分子HLA-A2的肿瘤相关突变通过在α子链与β2m子链接触面上引起额外的氢键抑制HLA-A2的构象变化,从而减弱TCR/pMHC的逆锁键,潜在性地减弱或者破坏了TCR的抗原识别以及T细胞的活化。该研究结果不仅为T细胞精确区分不同抗原提供了重要的理论依据,同时也为新生抗原的精确预测、新型肿瘤抗原特异性的TCR-T细胞免疫治疗方案的研发提供了关键信息。
浙江大学基础医学院博士研究生武鹏、张同同和机械工程学院博士研究生费攀宇,美国犹他大学博士刘宝玉以及中科院生物物理所研究助理崔蕾为该论文的共同第一作者,陈伟和娄继忠为该论文的共同通讯作者。该研究获得国家科技部蛋白质重大研究计划项目、国家自然科学基金委、浙江大学和中科院的基金支持。
图:生物力通过诱导MHC构象变化区分“非我”和“自我”抗原
近日,西安交通大学药学院研究论文发表在Aggregate(《聚集体》)期刊上。论文第一作者为西安交通大学药学院博士郭东男、胥丹,通讯作者为西安交通大学药学院教授王嗣岑与副教授侯晓芳。生物正交剪切化学(......
近日,浙江省肿瘤医院(中国科学院大学附属肿瘤医院)(以下简称“浙江省肿瘤医院”)胃外科胡灿分享了一个案例,AI模型从胃癌患者6个月前拍摄的CT中识别出胃癌信号,而同期的人工读片却未能发现任何异常。这一......
中山大学肿瘤防治中心研究员康铁邦、副研究员武远众团队研究发现,ASB7扩增会导致基因组不稳定,同时赋予肿瘤对PARP抑制剂(PARPi)的敏感性。这一发现未来或可为ASB7扩增型肿瘤患者提供新的治疗思......
CD8T细胞是免疫系统中的细胞毒性淋巴细胞,能够通过释放细胞毒素并诱导靶细胞死亡,有效清除被感染或发生异常的细胞。作为免疫治疗的前沿手段,CD8T细胞疗法已取得突破性进展。然而,肿瘤微环境常通过抑制性......
肿瘤医生推荐一名患者做基因检测,基因检测公司给予医生200元好处费。近日,上海市普陀区市场监管局微信公众号披露了基因检测商业贿赂的典型案例纪实,揭露了上述行业内幕。《中国经营报》记者查询相关行政处罚决......
大脑颅内肿瘤,尤其是位于脑深部或者临近重要功能脑区的肿瘤,一直是临床治疗中的重要挑战。传统手术切除的方法由于手术路径复杂,容易造成不可逆的神经损伤。此外,放疗虽能穿透颅骨,却可能误伤正常的脑组织,化疗......
在癌细胞的生存竞赛中,有一种特殊的“作弊器”——染色体外DNA(ecDNA)。它像是一个游离在细胞内的“外挂程序”,以环状小圈的形式携带关键致癌基因,帮助癌细胞“开挂升级”。临床数据显示,ecDNA存......
暨南大学基础医学与公共卫生学院教授罗钧洪团队基于变分自编码器深度学习框架开发了人工智能模型Multi-InsightforTcell(MIST),针对scRNA-seq与scTCR-seq数据的联合分......
关于征集参与《肿瘤治疗类冷冻治疗设备注册审查指导原则》编制工作的相关企业及单位信息的通知各有关单位:为进一步做好肿瘤治疗类冷冻治疗设备的技术审评工作,我中心已启动《肿瘤治疗类冷冻治疗设备注册审查指导原......
以色列特拉维夫大学近日发布公报说,该大学研究人员开发出一种基于人工智能的scNET系统,能深入了解细胞在肿瘤等复杂生物环境中的行为变化,有望为疾病治疗研究提供新途径。公报说,当前单细胞测序技术日益成熟......