
A demonstrated means to increase lifespan in a wide range of organisms is through the restriction of caloric intake. Reducing the consumption of calories increases the lifespan of many different organisms, including mice. Although caloric restriction has not been demonstrated experimentally to increase human lifespan, short-term changes in physiological measures like insulin responsiveness have been observed. Caloric restriction not only increases lifespan, but decreases age-related deterioration of systems and physiological responses, reducing age related diseases like cancer and neurodegenerative disease. Caloric restriction in animals reduces the levels of plasma glucose and insulin and reduces inflammatory responses and may reduce oxidative stress through reduced oxidative metabolism, further contributing to the health benefits of reduced calorie intake. The reduction in inflammation may be related to reduces plasma glucose and in humans could reduce an inflammation connection to cancer, heart disease, and Alzheimer’s disease. Genetic analysis has indicated several genes that influence lifespan, particularly those that alter pituitary development, reduce growth hormone secretion, reduce food intake, and reduce apoptosis (p66 Shc). All of these appear to converge on an IGF-1 receptor pathway and to reproduce many of the effects of caloric restriction. Although dwarf mice with defective growth hormone or IGF-1 signaling also have significantly increased lifespan, humans with defects in growth hormone signaling tend to develop diseases that shorten their lifespan. One of the downstream targets of IGF-1 signaling is to repress stress resistance proteins including antioxidant enzymes like superoxide dismutase, and heat shock proteins, so a reduction in IGF signaling may extend lifespan by increasing the expression of stress resistance genes. The link between caloric restriction and IGF signaling may be that a reduction in food intake reduces the expression of IGF-1, increasing the expression of stress resistance proteins. In addition to the IGF-1R mutation, p66 Shc mutation also increases lifespan without significant aberration of other systems. Shc is a target of IGF-1R phosphorylation, and a major inducer of cellular responses to oxidative stress. Shc increases levels of intracellular reactive oxygen species, repressing the forkhead factor FKHRL1. Alhtough FKHRL1 is also involved in apoptosis, in the absence of Shc, FKHRL1 mediates increased resistance to oxidative stress. Exploration of the genes that induce longevity in animals models may enlighten the role of these genes in human disease and lifespan.
Contributor: Glenn Croston Ph.D.
REFERENCES: Bluher M, Kahn BB, Kahn CR. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 2003 Jan 24;299(5606):572-4 Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, Cervera P, Le Bouc Y. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 2003 Jan 9;421(6919):182-7 Longo VD, Finch CE. Evolutionary medicine: from dwarf model systems to healthy centenarians? Science 2003 Feb 28;299(5611):1342-6 Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, Lanfrancone L, Pelicci PG. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 1999 Nov 18;402(6759):309-13 Napoli C, Martin-Padura I, de Nigris F, Giorgio M, Mansueto G, Somma P, Condorelli M, Sica G, De Rosa G, Pelicci P. Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc Natl Acad Sci U S A 2003 Feb 18;100(4):2112-6 Nemoto S, Finkel T. Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science 2002 Mar 29;295(5564):2450-2
日前,国产期刊TheInnovation获得首个影响因子(IF=32.1),成为科睿唯安JCR综合性期刊分类下排名仅次于《自然》(IF=64.8)和《科学》(IF=56.9)的期刊,并且这本期刊在目前......
近日,服务科学领域的全球领导者赛默飞世尔科技(以下简称赛默飞)宣布,在达成收购意向两个月之后,赛默飞以28亿美元、折合人民币约190亿元的价格,完成了对TheBindingSiteGroup的全现金收......
11月15日,施普林格·自然和TheLens平台宣布结成重要的合作伙伴关系,以更深入地揭示学术研究和数据如何能通过经济和社会成效,加速推动创新的问题解决方式。通过将科学、投资和企业领域的开放数据更好地......
6月10日,QS教育集团正式发布了2021年世界大学排名,中国共有83所高校上榜,包括内地高校51所,港澳台地区高校32所。中国大学的总体排名情况已经连续数年呈上升趋势,今年再度刷新了榜单。大学排名,......
磷酸甘油酸突变酶1(PGAM1)通过其代谢活性以及与其他蛋白质(例如α平滑肌肌动蛋白(ACTA2))的相互作用,在癌症代谢和肿瘤进展中起关键作用。变构调节被认为是发现针对PGAM1的高选择性和有效抑制......
作为一种重要的植物激素,茉莉酸不仅调控植物对于机械损伤、昆虫取食和腐生型病原菌侵害的防御反应,还参与调控诸多生长发育过程。basicHelix-Loop-Helix(bHLH)类型转录因子MYC2是茉......
ThePlantCell是植物领域的著名学术期刊,对植物学的发展起到了重要的引领作用。为庆祝创刊30周年,ThePlantCell杂志社邀请部分编委会成员及其他科学家对发表在该杂志的重要研究工作进行评......
当地时间11月30日,科学狂人文特尔(J.CraigVenter)创办的世界上最大的DNA测序实验室HumanLongevity公司宣布收购生物标志物开发企业CypherGenomics,具体的财务细......
在“富含造骨牛奶蛋白的酸奶及其生产方法”ZL申请公开说明书中,蒙牛明确表示,OMP的规范名词GFC“主要成分为类胰岛素成长因子(......
IGF是什么IGF(insulin-likegrowthfactors),中文翻译为“胰岛素样生长因子”或“类胰岛素生长因子”,因其结构与胰岛素类似而得名;也被称为“生长激素介质”(即SM,somat......