Antpedia LOGO WIKI资讯

清华施一公Genes&Dev细胞凋亡研究新进展

在2015年1月31日,由中国科学院院士和中国工程院院士评选的“2014年中国十大科技进展新闻”在京揭晓,清华大学生命科学学院施一公院士课题组完成的“首次揭示阿尔茨海默氏症致病蛋白三维结构”而入选。2月2日,Elsevier 在其中文网站上公布“2014年中国高被引学者榜单”。中科院院士、清华大学教授施一公为“生化,遗传和分子生物学”领域的第一人。延伸阅读:生命科学高被引中国学者公布 曹雪涛施一公等入选。 2月1日,施一公研究组与英国MRC分子生物学实验室Sjors Scheres研究组合作在国际权威杂志《Genes & Development》杂志在线发表题为“Structure of the apoptosome: mechanistic insights into activation of an initiator caspase from Drosophila”的学术论文,揭示了黑腹果蝇完整凋亡......阅读全文

锌如何参与细胞死亡

  锌是人体代谢所必需的一种微量元素,可抑制几个半胱天冬酶(caspase)的活性,从而起细胞凋亡调控因子的作用。逆转这种抑制作用是开发凋亡疗法的一种可能途径。很少有研究描述Zn2+与caspase相互作用的分子细节,了解该细节对于任何治疗策略的成功至关重要。   目前,弗吉尼亚州立联邦大学(VC

清华施一公Genes & Dev细胞凋亡研究新进展

  在2015年1月31日,由中国科学院院士和中国工程院院士评选的“2014年中国十大科技进展新闻”在京揭晓,清华大学生命科学学院施一公院士课题组完成的“首次揭示阿尔茨海默氏症致病蛋白三维结构”而入选。2月2日,Elsevier 在其中文网站上公布“2014年中国高被引学者榜单”。中科院院

简化细胞凋亡研究的工具

有许多凋亡触发器,其中包括某些细胞因子,蛋白质 - 蛋白质相互作用和化学品。一旦开始凋亡,线粒体膜电位变化,可以测量通过流式细胞仪使用BD:MitoScreen(JC-1)流式细胞仪检测试剂盒。  线粒体膜电位导致线粒体膜通透性增加,并释放出可溶性蛋白,如细胞色素C和亲半胱天冬酶的增加。  半胱天冬

关于癌细胞自杀的研究分析

  美国科学家首次发现,利用一种合成分子可以诱使癌细胞“自杀”。这将使在未来制订个性化癌症治疗方案成为可能。  美国伊利诺伊大学的研究人员在最新一期《自然·化学生物》杂志上报告说,多数细胞内都含有一种叫做半胱天冬酶-3酶原的蛋白。这种蛋白一旦被激活,就会转化成一种称为半胱胺酸蛋白酶-3的酶,导致有缺

胱天蛋白酶的基本信息

通常半胱天冬酶以酶原的形式合成,称为半胱天冬酶原(Procaspases)。在人类基因组中,这个蛋白质家族已知包含至少有12个成员 ,它们参与细胞凋亡、发育、坏死、炎症等许多重要的生理过程。其英文名称Caspases来自于半胱氨酸cysteine、天冬氨酸aspartic acid和蛋白酶prote

关于胱天蛋白酶的基本介绍

  通常半胱天冬酶以酶原的形式合成,称为半胱天冬酶原(Procaspases)。在人类基因组中,这个蛋白质家族已知包含至少有12个成员 ,它们参与细胞凋亡、发育、坏死、炎症等许多重要的生理过程。其英文名称Caspases来自于半胱氨酸cysteine、天冬氨酸aspartic acid和蛋白酶pro

关于胱天蛋白酶的简介

  通常半胱天冬酶以酶原的形式合成,称为半胱天冬酶原(Procaspases)。在人类基因组中,这个蛋白质家族已知包含至少有12个成员 ,它们参与细胞凋亡、发育、坏死、炎症等许多重要的生理过程。其英文名称Caspases来自于半胱氨酸cysteine、天冬氨酸aspartic acid和蛋白酶pro

肝癌死亡的过程介绍

核心提示: 肝癌主要发生于肝脏受到损伤诱发慢性疾病的患者中,截至目前为止,研究人员并不清楚在分子水平上引发肝癌的多种分子事件之间的关联,近日,一项刊登于国际杂志Cancer Cell上的研究报告中,慢性细胞死亡或能促进癌症的发生,细胞死亡地越多,剩下的细胞分裂速率就越高

Cell子刊:线粒体的阴暗面

  众所周知,线粒体细胞进行有氧呼吸的主要场所,被称为机体的能量工厂,故不论在生理上或病理上都具有十分重要的意义。然而,线粒体也有其阴暗的一面,在某些条件下,它能够促进肿瘤的发生。三月五日在Cell子刊《Molecular Cell》发表的一项研究,来自英国格拉斯哥大学、美国贝勒医学院、华盛顿大学和

科学家破译又一细菌策略

  人体细胞对“驻扎”在其内的细菌有一种独特的反应模式:程序性细胞死亡,也称为细胞凋亡,可以对感染中的细胞的应激情况作出相应的反应,导致其迅速地“自杀”。由于人体细胞的这种快速自我毁灭程序,病原体无法繁殖。但是,仍然有许多细菌能够逃过体细胞这种同归于尽的讨伐,导致这些细菌如何超越免疫系统的分子机制尚