电子轰击式离子源技术改进提高质谱仪器灵敏度
电子轰击式离子源广泛应用于气体同位素质谱、色谱-质谱联用仪、残气分析仪等科学仪器。为提高离子引出效率,中国科学院地质与地球物理研究所支撑系统工程师张建超发明了一种新型电子轰击离子源的试验装置及其设计方法,综合改进有效提高了质谱仪器的灵敏度。 电子轰击式离子源是利用灯丝发射的具有一定动能的电子去轰击进入离子源的样品气体,使中性分子或原子产生电离。电子轰击式离子源技术成熟,结构简单,电离效率高,广泛应用于气体同位素质谱、色谱-质谱联用仪、残气分析仪等科学仪器。目前商业上采用离子源电离室设计中主要采用双极场引出离子,电离室与拉出极之间由几十伏到几百伏的电压,电子在加速场的作用下被引出。这种离子源在结构上限制了离子引出效率进一步提高的可能性,只有近轴部分的离子才能通过狭缝,而且离子源出射角度较大,不利于离子传输。 为提高离子引出效率,中国科学院地质与地球物理研究所支撑系统工程师张建超发明了一种新型电子轰击离子源的试验装置及其设计......阅读全文
实验室质谱仪的类别及组成结构
实验室质谱仪种类很多,从应用的角度可以分为有机、无机、气体、同位素质谱仪几类。有机质谱是质谱仪中数量较多,应用较广的一类,在线气体质谱也是质谱大家庭中不可或缺的一种。在线气体质谱广泛的应用于残余气体分析(RGA)、催化研究(TPR、TPD、TPO)、环境尾气分析、气体纯度分析、反应动力学等。质谱仪的
实验室质谱仪的分类和结构介绍
实验室质谱仪种类很多,从应用的角度可以分为有机、无机、气体、同位素质谱仪几类。有机质谱是质谱仪中数量较多,应用较广的一类,在线气体质谱也是质谱大家庭中不可或缺的一种。在线气体质谱广泛的应用于残余气体分析(RGA)、催化研究(TPR、TPD、TPO)、环境尾气分析、气体纯度分析、反应动力学等。质谱仪的
实验分析仪器有机质谱仪离子源简介及离子化方式分类
由于质谱原理所限,质谱只能检测带电离子。离子源作为质谱中产生离子的重要装置,也被称为质谱的“心脏”。20世纪40年代,为适应有机物检测的需要,质谱工作者努力开发新的离子源,促进了离子化技术的迅猛发展。到近代,质谱仪不仅在生命科学领域,也在医学、环境科学、药物学等领域得到了广泛的应用。目前,随着离子化
气体质谱联用的基础知识(一)
气-质联用GC/MS被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。 接口:由GC出来的样品通过接口进入到质谱仪,接口是色质联用系统的关键。接口作用:压
生态中心在新型质谱离子源检测VOCs方面取得重要进展
中国科学院生态环境研究中心大气环境科学实验室气溶胶化学研究组杨波等人在新型离子源技术和原理上取得重要进展,其研究结果近期发表在分析类TOP期刊Analytical Chemistry上(dx.doi.org/10.1021/acs.analchem.7b04122)。 挥发性有机物(VOCs)
中国检科院成功研发新型敞开式质谱离子源
2020年7月12日,记者从中国检验检疫科学研究院获悉,近日,该院首席专家团队在敞开式质谱离子源的研制方面取得新进展,将传统的固体基板电喷雾离子源中的惰性基板改进为导电基板,并引入分子印迹修饰技术,首次合成了分子印迹聚合材料涂布的不锈钢片(MIPCS),研制出一种新型敞开式质谱离子源。
质谱法中EIS离子化和EI电离有什么不同
电喷雾电离(electrospray ionization, ESI )电离源。质谱仪中较为常用的一种离子化方式。 电喷雾离子源属于一种软电离源,能使大质量的有机分子生成带多电荷的离子,通常认为电喷雾可以用两种机制来解释。 (1)小分子带电残基机制:在喷针针头与施加电压的电极之间形成强电场,该电场使
质谱仪的概念和工作原理
质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/e大小分离
GCMS质谱联用仪硬件性能特点
质谱联用仪硬件性能特点: 1、稳定高效EI源设计,实现了离子的高效传输,同时使离子源的温度更加均匀,发射电子流自动控制系统提供连续可调的50-100ev的轰击电子流;2、独立、可靠、稳定的离子源加热系统,温度范围120℃- 400℃可控。可有效减少离子源污染问题,使数据库检索更可靠;3、双灯丝设计,
电子轰击二次电子像的定义和功能
中文名称电子轰击二次电子像英文名称electron bombardment secondary electron image定 义在发射电子显微镜中,电子轰击样品激发的二次电子所成的像。应用学科机械工程(一级学科),光学仪器(二级学科),电子光学仪器-电子光学仪器一般名词(三级学科)
质谱分析技术快原子轰击的原理
一束高能粒子,如氩、氙原子,射向存在于液态基质中的样品分子而得到样品离子,这样可以得到提供分子量信息的准分子离子峰和提供化合物结构信息的碎片峰。快原子轰击操作方便、灵敏度高、能在较长时间里获得稳定离子流。当用于绝大多数生物体中寡糖及其衍生物的分析时,可测分子量达6000。而且在该质量范围内,其灵
实验室分析仪器质谱仪器的基本组成
质谱仪器能使物质粒子(原子、分子)电离成离子,并利用电磁学原理,使带电的试样离子按质荷比分离、检测进行物质分析的装置。一、质谱仪器一般由四个大系统组成:电子学系统真空系统分析系统计算机系统二、其中分析系统是质谱仪器的核心,它包括三个重要部分:离子源质量分析器质量检测器另外,为了获得离子的良好分析,必
液质联用的离子源
液质联用的离子源,最早来源于ESI的诞生。最早是由analytica公司做的,大约在80年代。后来各公司不断改进,形成了各个公司ZL的离子源。其中,有独立ZL技术的有:Finnigan、Waters、AB、安捷伦。Bruker和安捷伦是合作关系,它让安捷伦用自己的离子阱,它就用了安捷伦的离子源,是一
[基础知识]质谱介绍及质谱图的解析
质谱介绍及质谱图的解析 质谱法是将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质量是物质的固有特征之一,不同的物质有不同的质量谱——质谱,利用这一性质,可以进行定性分析(包括分子质量和相关结构信息);谱峰强度也与它代表的化合物含量有关,可以用于定量分
质谱介绍及质谱图的解析
质谱法是将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质量是物质的固有特征之一,不同的物质有不同的质量谱——质谱,利用这一性质,可以进行定性分析(包括分子质量和相关结构信息);谱峰强度也与它代表的化合物含量有关,可以用于定量分析。 质谱仪一般由四部分
同位素测试仪器设备
现在常用的稳定同位素比值测量仪器为质谱计。质谱计的工作原理是利用质荷比不同的离子在磁场或电场中运动轨迹的不同来测量离子的质量和数量。离子源、分析器和检测器是所有质谱计的基本组成部分 (图87.1) ,但是在不同种类的仪器中设计各有不同。此外,不同类型的仪器还可包含部分特有的装置。图87.1 同位素质
气质联用(GC/MS)原理
气-质联用(GC/MS)被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。 接口:由GC出来的样品通过接口进入到质谱仪,接口是色质联用系统的关键。接口作用
气质联用质谱仪
无论你们在工作中遇到多么什么样的的质谱,不用太紧张,因为质谱大体构造是基本相同的。不过气质联用和质谱单独使用的不同点在于,气质联用的使用前提是,气相色谱能够提供已分离,并且被气化的化合物分子,从而被质谱识别和检测。我们先来了解一下质谱的构造,质谱一般由样品导入系统、离子源、质量分析器、检测器、数据处
质谱仪的组成部分介绍
质谱仪主要由真空系统、进样系统、离子源、质量分析器、检测器等部分组成。 真空系统:离子源的真空度要保持在10-3~10-5Pa,质量分析器的真空度要保持10-6Pa。 进样系统:可以分为直接进样和色谱进样。单组分、高沸点的液体样品可以采用直接进样。色谱进样一般是液质联用或气质联用等仪器,适用
GCMS的原理
GCMS又叫气相色谱质谱联用仪。原理:GC通过将气化的样品进入到色谱柱内进行分离,分离之后的化合物进入MS内进行检测。通过集成NIST谱图检索功能,可以方便、准确检索目标分析物。GCMS是稳定高效EI源设计,实现了离子的高效传输,同时使离子源的温度更加均匀,发射电子流自动控制系统提供连续可调的50-
GCMS的原理
GCMS又叫气相色谱质谱联用仪。原理:GC通过将气化的样品进入到色谱柱内进行分离,分离之后的化合物进入MS内进行检测。通过集成NIST谱图检索功能,可以方便、准确检索目标分析物。GCMS是稳定高效EI源设计,实现了离子的高效传输,同时使离子源的温度更加均匀,发射电子流自动控制系统提供连续可调的50-
GCMS的原理
GCMS又叫气相色谱质谱联用仪。原理:GC通过将气化的样品进入到色谱柱内进行分离,分离之后的化合物进入MS内进行检测。通过集成NIST谱图检索功能,可以方便、准确检索目标分析物。GCMS是稳定高效EI源设计,实现了离子的高效传输,同时使离子源的温度更加均匀,发射电子流自动控制系统提供连续可调的50-
GCMS的原理
GCMS又叫气相色谱质谱联用仪。原理:GC通过将气化的样品进入到色谱柱内进行分离,分离之后的化合物进入MS内进行检测。通过集成NIST谱图检索功能,可以方便、准确检索目标分析物。GCMS是稳定高效EI源设计,实现了离子的高效传输,同时使离子源的温度更加均匀,发射电子流自动控制系统提供连续可调的50-
质谱仪原理
质谱仪原理是用高能电子流等轰击样品分子,使该分子失去电子变为带正电荷的分子离子和碎片离子。这些不同离子具有不同的质量,质量不同的离子在磁场的作用下到达检测器的时间不同,其结果为质谱图。质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多
质谱仪的原理是什么
质谱仪原理是用高能电子流等轰击样品分子,使该分子失去电子变为带正电荷的分子离子和碎片离子。这些不同离子具有不同的质量,质量不同的离子在磁场的作用下到达检测器的时间不同,其结果为质谱图。质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多
质谱仪原理
质谱仪原理是用高能电子流等轰击样品分子,使该分子失去电子变为带正电荷的分子离子和碎片离子。这些不同离子具有不同的质量,质量不同的离子在磁场的作用下到达检测器的时间不同,其结果为质谱图。质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多
质谱法概述
质谱法是通过将试样转化为运动的气态离子并按质荷比m/z大小进行分离记录的分析方法,所得结果即为质谱图。根据质谱图提供的信息,可以进行多种有机物及无机物的定性定量分析、复杂化合物的结构分析、样品中各种同位素的测定及固体表面结构和组成分析。质谱法是利用带电粒子在磁场或电场中的运动规律,按其质荷比m/z实
质谱法概述
质谱法是通过将试样转化为运动的气态离子并按质荷比m/z大小进行分离记录的分析方法,所得结果即为质谱图。根据质谱图提供的信息,可以进行多种有机物及无机物的定性定量分析、复杂化合物的结构分析、样品中各种同位素的测定及固体表面结构和组成分析。质谱法是利用带电粒子在磁场或电场中的运动规律,按其质荷比m/z实
二次离子质谱的结构
近年来,二次离子质谱这一前沿的分析技术越来越多地被用在了科学研究当中,应用范围较为广泛。然而,依然有很多小白对二次离子质谱的基本结构不太了解。那么二次离子质谱的组成结构是怎样的呢?都有哪些功能和特点?今天小编就来简单盘点一下。 二次离子质谱主要由三部分组成:一次离子发射系统、质谱仪、二次
气相色谱质谱联用仪性能特点
气相色谱质谱联用仪性能特点: 硬件1、稳定高效EI源设计,实现了离子的高效传输,同时使离子源的温度更加均匀,发射电子流自动控制系统提供连续可调的50-100ev的轰击电子流;2、独立、可靠、稳定的离子源加热系统,温度范围120℃- 400℃可控。可有效减少离子源污染问题,使数据库检索更可靠;3、双灯