基因测癌:科学家在大数据中酝酿“中国突破”

研制鼻咽癌疫苗,引进国际先进的基因检测平台……我国科学家表示,如果加大对临床试验的数据采集和共享,有望通过基因测序技术让更多癌症患者受益。 中医提倡“治未病”,西医也在研究通过基因提前治病。一批国际知名的生命科学学者和临床医学专家,近日共同交流基因测序的最新研究成果,并探讨如何在临床转化上取得“中国突破”。 定位突变基因,关掉癌症“发动机” 中国科学院院士、北京医院院长曾益新带领的团队正在研究开发鼻咽癌的疫苗。他曾苦寻多年,找到了鼻咽癌的数个易感基因。 曾益新表示,这些易感基因驱动了鼻咽癌的发生,如果定位这些基因,有针对性地研制药物阻止基因突变,就好像关掉了汽车的发动机,有可能终止鼻咽癌的发生。 美国杜克大学讲席教授、泛生子基因首席科学家阎海说,泛生子今年正式引入目前全球测序通量及效率最高的测序系统,为癌症基因组学研究及临床应用提供有力支持。把癌症病人和健康人群的海量数据对比分析,预测出病变趋势,有望通过医疗等手段......阅读全文

基因突变的影响因素

外因物理因素:x射线、激光、紫外线、伽马射线等。化学因素:亚硝酸、黄曲霉素、碱基类似物等。生物因素:某些病毒和细菌等。内因DNA复制过程中,基因内部的脱氧核苷酸的数量、顺序、种类发生了局部改变从而改变了遗传信息

影响基因突变的内因

DNA复制过程中,基因内部的脱氧核苷酸的数量、顺序、种类发生了局部改变从而改变了遗传信息

突变型基因的概念

同一座位上的其他等位基因一般都直接或间接地由野生型基因通过突变产生,相对于野生型基因,称它们为突变型基因。

什么是EGFR基因突变

做基因检测的原因:1、基因检测可以了解自身遗传背景,检测身体与疾病相关的基因,使人们能预测身体患疾病的风险。2、基因检测可以做到疾病的早知道、早预防、早治疗,主动把握健康。3、基因检测可以指导健康的生活方式,改善不良的生活环境和生活习惯。4、基因检测避免盲目补充保健品,给身体造成不必要的伤害。其实E

基因突变的研究历史

基因突变首先由T.H.摩尔根于1910年在果蝇中发现。H.J.马勒于1927年、L.J.斯塔德勒于1928年分别用X射线等在果蝇、玉米中最先诱发了突变。1947年C.奥尔巴克首次使用了化学诱变剂,用氮芥诱发了果蝇的突变。1943年S.E.卢里亚和M.德尔布吕克最早在大肠杆菌中证明对噬菌体抗性的出现是

基因突变有哪些类型

  按照表型效应,突变型可以区分为形态突变型、生化突变型以及致死突变型等。这样的区分并不涉及突变的本质,而且也不严格。因为形态的突变和致死的突变必然有它们的生物化学基础,所以严格地讲一切突变型都是生物化学突变型。  形态突变型——微生物中在菌落类型、细胞形态等方面也曾分离到各种形态的突变型。这类突变

基因突变的应用介绍

诱变育种通过诱发使生物产生大量而多样的基因突变,从而可以根据需要选育出优良品种,这是基因突变的有用的方面。在化学诱变剂发现以前,植物育种工作主要采用辐射作为诱变剂;化学诱变剂发现以后,诱变手段便大大地增加了。在微生物的诱变育种工作中,由于容易在短时间中处理大量的个体,所以一般只是要求诱变剂作用强,也

基因突变的表现类型

基因突变(gene mutation)一个基因内部可以遗传的结构的改变,又称为点突变,通常可引起一定的表型变化。广义的突变包括染色体畸变,狭义的突变专指点突变。实际上畸变和点突变的界限并不明确,特别是微细的畸变更是如此。野生型基因通过突变成为突变型基因。突变型一词既指突变基因,也指具有这一突变基因的

突变按照基因结构改变分类

小规模突变小规模突变影响基因中的一个或几个核苷酸 (只影响到一个核苷酸的突变称为点突变)。小规模突变包括:插入:将一个或多个额外的核苷酸添加到DNA中。它们通常由转座因子引起,或由重复元件错误复制所致。位于基因编码区的插入可改变mRNA的剪接(剪接位点突变)或引起阅读框架的移位(移码),这两者都可显

DNA基因突变的类别

按照基因结构改变分类小规模突变小规模突变影响基因中的一个或几个核苷酸 (只影响到一个核苷酸的突变称为点突变)。小规模突变包括:插入:将一个或多个额外的核苷酸添加到DNA中。它们通常由转座因子引起,或由重复元件错误复制所致。位于基因编码区的插入可改变mRNA的剪接(剪接位点突变)或引起阅读框架的移位(

影响基因突变的外因

物理因素:x射线、激光、紫外线、伽马射线等。化学因素:亚硝酸、黄曲霉素、碱基类似物等。生物因素:某些病毒和细菌等。

基因突变还能预防疟疾?

  《Cell》文章报道,一个曾被认为会导致罕见疾病的突变,被认定为“防疟基因”。这项研究由Scripps研究所(TSRI)领导,从长远来看,它将改变人类对传染性疾病的防御认知。  PIEZO1基因突变,编码一个使红细胞脱水的压力传感蛋白。在小鼠模型中,PIEZO1突变使疟原虫难以感染红细胞,从而避

果蝇白眼突变基因的克隆

【实验目的】掌握T克隆的原理和方法。了解质粒提取的原理和方法。【实验原理】外源DNA与载体分子的连接就是DNA重组,这样重新组合的DNA叫做重组体或重组子。重组的DNA分子是在DNA 连接酶的作用下,有Mg2+ 、ATP存在的连接缓冲系统中,将载体分子与外源DNA分子进行连接。Taq DNA

基因测序揭示小麦驯化关键基因突变

  野生小麦的麦粒成熟时,穗轴变脆,容易碎裂,有助于在风力作用下把麦粒散播出去、繁殖下一代。但这对人类采集麦粒非常不方便,带有使穗轴不变脆的“硬轴”基因突变的小麦受到青睐,并逐渐被人类驯化。现在经过驯化的小麦品种都有硬轴,穗轴在收割时仍保持完整。  以色列特拉维夫大学、澳大利亚悉尼大学等多家机构科研

与肾癌相关的基因突变类型GNAS基因

GNAS作为一个重要的信号转导蛋白,主要功能是在G蛋白偶联受体信号转导途径中,激活腺苷酸环化酶,导致cAMP水平的升高,参与调控细胞生长和细胞分裂。

与肾癌相关的基因突变类型FLCN基因

该基因位于17号染色体的Smith-Magenis综合征区域。该基因突变与Birt-Hogg-Dube综合征有关,后者以纤维滤泡瘤、肾肿瘤、肺囊肿和气胸为特征。该基因的选择性剪接导致编码不同亚型的两个转录变体。

与肾癌相关的基因突变类型MET基因

MET基因编码的蛋白为肝细胞生长因子受体HGFR,具有酪氨酸激酶活性,与多种癌基因产物和调节蛋白相关,参与细胞信息传导、细胞骨架重排的调控,是细胞增殖、分化和运动的重要因素。目前认为,c-met与多种癌的发生和转移密切相关,研究表明,许多肿瘤病人在其肿瘤的发生和转移过程中均有c-met过度表达和基因

与肾癌相关的基因突变类型KLLN基因

这种无内含子基因编码的蛋白质存在于细胞核中,在那里它可以抑制DNA合成,促进S相停滞,并与凋亡相结合。这种DNA结合蛋白的表达被转录因子p53上调。

与肾癌相关的基因突变类型RHEB基因

该基因是小GTP酶超家族的成员,编码一种脂质锚定的细胞膜蛋白,具有5个重复的ras相关GTP结合区。由于这种蛋白在胰岛素/Tor/S6K信号通路中的作用,它在调节生长和细胞周期进程中是至关重要的。蛋白质具有GTP酶活性,在GDP结合形式和GTP结合形式之间穿梭,这种活性需要蛋白质的法呢酰化。已经绘制

与肾癌相关的基因突变类型ALK基因

ALK基因编码一种受体酪氨酸激酶(eceptor tyrosine kinase ,RTK),为跨膜蛋白,属于胰岛素受体超家族,在大脑发育与及特定的神经元中起重要作用。最初在间变性大细胞淋巴瘤(anaplastic large cell lymphoma, ALCL)发现ALK-NPM1融合蛋白,目

基因重组与基因突变的区别有哪些?

  基因重组是指控制不同性状的基因重新组合。能产生大量的变异类型,但只产生新的基因型,不产生新的基因。基因重组发生在有性生殖的减数第一次分裂过程中,即四分体时期,同源染色体的非姐妹染色单体交叉互换和减数第一次分裂后期非等位基因随着非同源染色体的自由组合而自由组合,基因重组是杂交育种的理论基础。  基

与肾癌相关的基因突变类型DROSHA基因

双链(ds)RNA特异性内核糖核酸酶III超家族成员参与真核细胞和原核细胞的多种RNA成熟和衰变途径(Fortin等人,2002[PubMed 12191433])。RNase III Drosha是核心核酸酶,执行细胞核中microRNA(microRNA)处理的起始步骤(Lee等人,2003[P

与肾癌相关的基因突变类型VHL基因

VHL基因的突变会导致林岛综合征(Von Hippel—Lindau Syndrome,VHL),即VHL综合征,也VHL基因名字的来源。VHL综合征是常染色体显性遗传性肿瘤疾病,一般包括肾囊肿、肾细胞癌、胰腺囊肿、胰腺癌、嗜铬细胞瘤、视网膜血管瘤、上皮性囊腺瘤和大脑脊髓的血管瘤病。发病机制为VHL

与食管癌相关的突变基因​MYC基因

该基因编码的蛋白质是一种多功能的核磷蛋白,在细胞周期进展、凋亡和细胞转化中起到作用。作为调节特定靶基因转录的转录因子发挥作用。这种基因的突变、过度表达、重排和易位与多种造血肿瘤、白血病和淋巴瘤,包括伯基特淋巴瘤有关。有证据表明,来自上游、非aug(cug)帧和下游aug起始位点的选择性翻译起始导致两

与食管癌相关的突变基因EGFR基因

EGFR编码的蛋白是一种跨膜糖蛋白,也是表皮生长因子受体家族中的一员,该家族包括HER1(erbB1,EGFR)、HER2(erbB2,NEU)、HER3(erbB3)及HER4(erbB4),也属于受体酪氨酸激酶家族。EGFR作为细胞表面蛋白可与配体如表皮生长因子(EGF)结合,EGFR可被激活,

与食管癌相关的突变基因EGFR基因

EGFR编码的蛋白是一种跨膜糖蛋白,也是表皮生长因子受体家族中的一员,该家族包括HER1(erbB1,EGFR)、HER2(erbB2,NEU)、HER3(erbB3)及HER4(erbB4),也属于受体酪氨酸激酶家族。EGFR作为细胞表面蛋白可与配体如表皮生长因子(EGF)结合,EGFR可被激活,

与肾癌相关的基因突变类型TERT基因

端粒酶是一种核糖核蛋白聚合酶,通过添加端粒重复序列TTagg来维持端粒末端。这种酶由一种具有逆转录酶活性的蛋白质成分(由该基因编码)和一种作为端粒重复模板的RNA成分组成。端粒酶的表达在细胞衰老中起作用,因为它通常在出生后的体细胞中被抑制,导致端粒逐渐缩短。体细胞端粒酶表达的放松调控可能与肿瘤发生有

与肾癌相关的基因突变类型EGFR基因

EGFR编码的蛋白是一种跨膜糖蛋白,也是表皮生长因子受体家族中的一员,该家族包括HER1(erbB1,EGFR)、HER2(erbB2,NEU)、HER3(erbB3)及HER4(erbB4),也属于受体酪氨酸激酶家族。EGFR作为细胞表面蛋白可与配体如表皮生长因子(EGF)结合,EGFR可被激活,

与食管癌相关的突变基因​AXL基因

酪氨酸蛋白激酶受体UFO是一种人类由AXL基因编码的酶。 该基因最初被命名为UFO,因为这种蛋白质的功能不明。 然而,自其发现以来的几年中,对AXL表达谱和机制的研究使其成为一个越来越有吸引力的目标,特别是对于癌症治疗。 近年来,AXL已成为癌症细胞免疫逃逸和耐药性的关键促进因素,导致侵袭性和转移性

基因测序揭示小麦驯化的关键基因突变

  从野草到人类主粮之一,小麦在被驯化的过程中发生了巨大变化。一个国际科研小组对野生小麦进行基因测序,发现了控制穗轴易碎性的两组基因,它们在小麦驯化过程中起着关键作用。这一发现有助于培育更好的小麦品种。  位于今天中东地区被称作“新月沃地”的区域,是小麦的起源地。大约1万年前,这里的居民开始种植小麦