Antpedia LOGO WIKI资讯

福建物构所在氢键有机框架材料研究中取得进展

氢键有机框架(Hydrogen-bonded organic frameworks, 简称HOF)具有容易再生、合成条件温和、成本较低等特点,从而使其在气体存储和分离等领域具有广阔的应用前景。然而主要以氢键和π···π 堆积等超分子弱作用构筑的HOF材料具有较差的稳定性,严重制约了HOF材料的应用和发展。 在国家自然科学基金、科技部“973”计划、中国科学院战略性先导科技专项(B类)和中科院青年创新促进会等基金的资助下,中国科学院福建物质结构研究所结构化学国家重点实验室洪茂椿课题组与袁大强课题组通过自主设计合成了一例多孔的、具有金刚石拓扑的五重穿插HOF材料(HOF-TCBP),该材料具有较高的比表面积,优良的水、热稳定性以及易再生性。研究结果表明,当在70 oC活化后,其BET高达2066 m2 g-1,高于绝大多数HOFs材料的BET值。将该样品浸泡在水中24 h后,其BET仅仅降低到1876 m2 g-1。而把样品在......阅读全文

福建物构所在氢键有机框架材料研究中取得进展

  氢键有机框架(Hydrogen-bonded organic frameworks, 简称HOF)具有容易再生、合成条件温和、成本较低等特点,从而使其在气体存储和分离等领域具有广阔的应用前景。然而主要以氢键和π···π 堆积等超分子弱作用构筑的HOF材料具有较差的稳定性,严重制约了HOF材料的应

福建物构所柔性金属有机框架材料研究取得进展

  相对于刚性金属有机框架(MOF)料,柔性MOF材料具有永久多孔性和结构多样性等特点,而且该类材料可以在保持自身晶态的同时亦可对外界的热、声、光、电等刺激做出响应。由于具有小孔与大孔结构(或无孔到有空)之间的转变,该类材料在气体吸附与存储方面表现出良好的应用前景。  中国科学院院士、中科院福建物质

福建物构所单相白光金属有机框架材料研究获进展

  金属-有机框架化合物(MOFs)具有多孔性、高比表面积、孔道可调等独特的优点,被广泛应用于主客体化学的研究以及功能复合材料的制备。  在国家自然科学基金、中国科学院战略性先导科技专项、科技部973计划、中组部青年千人计划等基金的资助下,中科院院士、中科院福建物质结构研究所研究员吴新涛和研究员朱起

福建物构所柔性金属有机框架功能材料研究取得进展

  柔性金属有机框架材料(MOF)能够随客体分子灵活地变换其孔道结构及功能,在刺激响应型智能孔材料方面具有明显优势,如何系统地构筑以及修饰这类材料还面临着巨大的挑战,其中一个主要原因在于柔性的骨架结构在调控及修饰(包括前修饰以及后合成修饰)过程中容易变形或者坍塌。   在国家自然科学基金项目的支持

福建物构所新能源硼咪唑框架材料研究获进展

  通过电催化水分解产生氢气和氧气是未来非常有前途的一种替代能源。成功实现这一目标的关键在于开发出高效催化析氧反应(OER)和析氢反应(HER)的电催化剂,尤其是发展高效价廉的过渡金属基电催化剂已成为近年来新能源领域的研究热点。  中国科学院福建物质结构研究所结构化学国家重点实验室研究员张健领导的无

福建物构所多孔金属有机框架材料研究获新进展

金属咪唑框架材料  面对当前严峻的能源危机与环境恶化,探索应用于能源气体(氢气、甲烷等)的存储、温室气体(二氧化碳)的俘获以及高效多相催化反应的新多孔材料一直是化学与材料领域的研究热点之一。近年来,微(介)孔金属有机框架材料(MOFs)因其在气体存储/分

福建物构所等在锆基框架材料的结构调控研究中获进展

  由于在气体存储与分离、光捕获和催化等领域的潜在应用价值,金属有机框架(MOF)材料的研究在过去20年中取得突飞猛进的发展。在影响MOF材料的框架结构方面,不仅不同的组分可以形成作用,具有不同对称性或构型的相同(类似)组分在其中也扮演着重要角色。但是,当前研究对于“同组分异构体”MOF材料的合成和

福建物构所远程选择性碳氢键活化研究取得进展

  配合物中配体的配位模式会影响配合物的结构和性质。通过调控配体的配位模式,获得金属催化剂在碳氢键活化中新的催化活性的策略,是金属有机催化领域值得研究的一个重要方向。  当前,碳氢键活化反应的研究是一个前沿研究领域,被认为是有机化学研究的一个圣杯。然而,由于有机化合物中活性类似的碳氢键的普遍存在,选

福建物构所区域选择性碳氢键活化研究获进展

  区域(或称位点)选择性是碳氢键活化研究领域的一个重要方向。一个有机化合物中往往含有多个活性相似的碳氢键,如何精准地活化和官能团化所需要的碳氢键,是一个关键而又亟待解决的问题。   在国家“青年千人计划”、国家自然科学基金项目等资助下,中国科学院福建物质结构研究所结构化学国家重点实验室和中科院煤制

福建物构所刺激响应材料研究获进展

  具有双重或多重刺激响应性能的材料可以经由多种不同机理对外界环境予以响应,因此设计合成此类“软材料”对未来智能技术的发展非常重要。目前已开发的双重或多重刺激响应材料主要是非晶态的有机聚合物,由于缺乏有效的研究手段,从而使它们的刺激响应机理难以明确。柔性金属有机框架化合物(FMOFs)不仅