Antpedia LOGO WIKI资讯

自噬是干细胞抗衰老的手段

自噬是细胞对抗恶劣环境的重要手段,例如在营养缺乏或高温氧化等恶劣环境下,细胞可以启动自噬,达到应对细胞应激保护自身的目的。研究发现,自噬也是许多物种对抗衰老的一种措施。最新研究发现,造血干细胞也利用这种方法维持自身的年轻化。这给许多造血相关疾病的治疗带来新的思路。其实人体内的干细胞类型非常多,这些细胞对维持各种特定组织的稳态十分关键,如果干细胞维持干性都需要类似的机制,那么激活干细胞自噬可以作为一种比较可行的抗衰老手段。但是肿瘤干细胞是癌症恶变和转移的重要因素,激活干细胞自噬会不会导致肿瘤的发生和恶变。这需要进行针对性研究,弄清楚肿瘤干细胞和正常组织干细胞的差异,才能建立安全的干预措施。 考虑到本研究认为线粒体自噬能减少干细胞内线粒体数量,降低线粒体活性,诱导细胞进入休眠状态,减少线粒体代谢引起的氧化应激。另外一种影响干细胞的重要因素是低氧条件,研究表明骨髓属于生理低氧环境,在这样的环境下有利于细胞维持干细胞特征,其他如神......阅读全文

自噬是干细胞抗衰老的手段

  自噬是细胞对抗恶劣环境的重要手段,例如在营养缺乏或高温氧化等恶劣环境下,细胞可以启动自噬,达到应对细胞应激保护自身的目的。研究发现,自噬也是许多物种对抗衰老的一种措施。最新研究发现,造血干细胞也利用这种方法维持自身的年轻化。这给许多造血相关疾病的治疗带来新的思路。其实人体内的干细胞类型非常多,这

Nature:自噬与干细胞命运

  骨骼肌的再生能力依赖于长寿的肌肉干细胞(称为卫星细胞)。这些细胞一般处于静息状态,在组织受损的时候激活,生成肌纤维或者进行自我更新。静息状态是维持骨骼肌干细胞群体的一种简单方式。  肌肉干细胞的再生功能在衰老过程中逐渐衰退,这种衰退在生命的最后阶段达到顶峰。正因如此,高龄老人容易患上肌肉衰减综合

人类抗衰老新方法:人工干预“自噬”

  据每日邮报报道,一项里程碑意义的研究为人类抗衰老找到新的方法。加州理工学院和加州大学洛杉矶分校的一项研究为逆转和延缓衰老铺平了道路。线粒体是细胞呼吸和生命活动的重要场所,被称为“细胞电池”。随着年龄的增长,DNA会分解和突变,线粒体就会出现各种问题,进而形成身体症状。通过一种开创性的手法,科学家

自噬体的自噬发生条件

自噬体(autophgosome)自噬溶酶体(autolysosome)当自噬体与溶酶体融合后,形成自噬溶酶体。自噬性溶酶体是一种自体吞噬泡, 作用底物是内源性的,即细胞内的蜕变、破损的某些细胞器或局部细胞质。这种溶酶体广泛存在于正常的细胞内,在细胞内起“清道夫”作用,作为细胞内细胞器和其它结构自然

自噬性死亡的自噬机制

细胞为维持正常新陈代谢,其生长过程始终都有自噬现象,这已在形态学中得到证实。但自噬的消长受多种因素影响,营养缺乏、胰高血糖素可诱导自噬,胰岛素抑制自噬,细胞肿胀也同胰岛素一样有抑制自噬的作用,它们的作用点在于改变氨基酸的浓度。当氨基酸浓度降低时,自噬启动可产生氨基酸,保证器官成活;相反则自噬被抑制。

自噬的自噬的研究方法

正常培养的细胞自噬活性很低,不适于观察,因此,必须对自噬进行人工干预和调节,经报道的工具药有:(一)自噬诱导剂1)Bredeldin A / Thapsigargin / Tunicamycin :模拟内质网应激2)Carbamazepine/ L-690,330/ Lithium Chloride

自噬的自噬发生过程

在此过程中,自噬体的形成是关键,其直径一般为 300 ~ 900 nm,平均 500 nm,囊泡内常见的包含物有胞质成分和某些细胞器如线粒体、内吞体、过氧化物酶体等。与其他细胞器相比,自噬体的半衰期很短,只有 8 min 左右,说明自噬是细胞对于环境变化的有效反应。由于自体吞噬较少受到关注,而且很难

Autophagy(自噬)

自噬是近年来很热门的领域,搜了一下园子,发现没有这方面系统的介绍或讨论,但很多战友有这方面的疑问,加上本人最近对此也非常感兴趣,因此,借本版来专门讨论一下自噬(说实在的,自噬属于丁香园哪一个版块的范围我也选不好),与各位同行或有志于研究自噬的战友共同学习,也欢迎大家提出自己的看法,本人的目的就是交流

Autophagy(自噬)

自噬是近年来很热门的领域,搜了一下园子,发现没有这方面系统的介绍或讨论,但很多战友有这方面的疑问,加上本人最近对此也非常感兴趣,因此,借本版来专门讨论一下自噬(说实在的,自噬属于丁香园哪一个版块的范围我也选不好),与各位同行或有志于研究自噬的战友共同学习,也欢迎大家提出自己的看法,本人的目的就是交流

自噬分类

根据细胞物质运到溶酶体内的途径不同,自噬分为以下几种。①大自噬:由内质网来源的膜包绕待降解物形成自噬体,然后与溶酶体融合并降解其内容物;②小自噬:溶酶体的膜直接包裹长寿命蛋白等,并在溶酶体内降解;③分子伴侣介导的自噬(CMA):胞质内蛋白结合到分子伴侣后被转运到溶酶体腔中,然后被溶酶体酶消化。CMA