布鲁克发布世界最快的原子力显微镜新品
美国加利福尼亚州当地时间2011年5月2日,布鲁克(Bruker)发布了一款具有创新性和独特外形的原子力显微镜新品――Dimension FastScanTM,该产品在不牺牲纳米级分辨率的前提下提高显微镜成像速度方面取得了重大突破。Dimension FastScanTM比其他AFM扫描速度提高了数百倍,能够在数秒或数分钟内,而不是数小时或数天内得出结果,是世界上扫描速度最快的高分辨原子力显微镜。 鉴于在纳米尺度上观察与了解材料的需求在不断增加,作为世界上使用最广泛的原子力显微平台的最新成员,Dimension FastScan采用了数项创新技术,使快速扫描速度、图像的高分辨率与精度达成完美平衡。基于成功设计的原子力显微镜架构,Dimension FastScan是一个尖端扫描系统(tip-scanning),能够提供空气或液体中的大、小样品的测量。 “Dimension FastScan实现了布鲁克在原子力显......阅读全文
原子力显微镜的原理
原子力显微镜:是一种利用原子,分子间的相互作用力来观察物体表面微观形貌的新型实验技术.它有一根纳米级的探针,被固定在可灵敏操控的微米级弹性悬臂上.当探针很靠近样品时,其顶端的原子与样品表面原子间的作用力会使悬臂弯曲,偏离原来的位置.根据扫描样品时探针的偏离量或振动频率重建三维图像.就能间接获得样品表
相位式原子力显微镜
相位式原子力显微镜(Phase Ima ging Force Microscope)原子力显微镜在轻敲式AFM(tapping mode)操作下,量测及回馈因表面抵挡及黏滞力的作用,会引起振动探针的相位改变量,而抵挡及黏滞力的差异为不同材料性质引起,因此有机会用相位差(Phase la g)来观察表
原子力显微镜工作原理
如下:原子力显微镜的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定。带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。利用光学检
原子力显微镜用胶
原子力显微镜(Atomic Force Microscope ,AFM),一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。它通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时
原子力显微镜的好处
我们前面已经提到,原子力显微镜的测量依靠的是针尖与物体表面之间的相互作用,而这种相互作用是广泛存在于各种分子或者原子之间的,所以原子力显微镜可以直接测量几乎各种表面的结构而不需要像电子显微镜那样做特殊的样品处理,同时原子力显微镜也不像电子显微镜那样需要一个高真空的环境。这不仅节省了大量的时间精力,而
原子力显微镜工作模式
原子力显微镜工作模式 原子力显微镜的工作模式是以针尖与样品之间的作用力的形式来分类的。主要有以下3种操作模式:接触模式、非接触模式和敲击模式。 1、接触模式从概念上来理解,接触模式是AFM最直接的成像模式。正如名字所描述的那样,AFM在整个扫描成像过程之中,探针针尖始终与样
原子力显微镜(AFM)概述
原子力显微镜(AFM)概述最早扫描式显微技术(STM)使我们能观察表面原子级影像,但是STM 的样品基本上要求为导体,同时表面必须非常平整, 而使STM 使用受到很大的限制。而目前的各种扫描式探针显微技术中,以原子力显微镜(AFM)应用是最为广泛,AFM 是以针尖与样品之间的属于原子级力场作用力,所
原子力显微镜使用分析
实验概要了解原子力显微镜的基本结构和原理。掌握原子力显微镜对固体和粉末样品的要求及制作方法。掌握原子力显微镜使用方法。实验原理原子力显微镜的优点是:有较高的放大倍数,20-20万倍之间连续可调;有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;试样制备简单。1. 仪器结
原子力显微镜的由来
原子力显微镜(atomic force microscope, AFM)是一种具有原子分辨率的表面形貌、电磁性能分析的重要仪器。1981年,STM(scanning tunneling microscopy, 扫描隧道显微镜)由IBM-Zurich 的Binnig and Rohrer 发明。1
原子力显微镜原理概述
AFM 是在STM 基础上发展起来的,是通过测量样品表面分子(原子)与AFM 微悬臂探针之间的相互作用力,来观测样品表面的形貌。AFM 与STM 的主要区别是以1 个一端固定而另一端装在弹性微悬臂上的尖锐针尖代替隧道探针,以探测微悬臂受力产生的微小形变代替探测微小的隧道电流。 其工作原理:将一
原子力显微镜成像模式
原子力显微镜的主要工作模式有静态模式和动态模式两种。在静态模式中,悬臂从样品表面划过,从悬臂的偏转可以直接得知表面的高度图。在动态模式中,悬臂在其基频或谐波或附近振动,而其振幅、相位和共振与探针和样品间的作用力相关,这些参数相对外部参考的振动的改变可得出样品的性质。 接触模式 在静态模式中,
扫描原子力显微镜(AFM)
扫描原子力显微镜(AFM)可以对纳米薄膜进行形貌分析,分辨率可以达到几十纳米,比STM差,但适合导体和非导体样品,不适合纳米粉体的形貌分析。
原子力显微镜工作模式
原子力显微镜的工作模式是以针尖与样品之间的作用力的形式来分类的。主要有以下3种操作模式:接触模式(contact mode) ,非接触模式( non - contact mode) 和敲击模式( tapping mode)。接触模式从概念上来理解,接触模式是AFM最直接的成像模式。AFM 在整个扫描
原子力显微镜原理概述
原子力显微镜原理概述AFM 是在STM 基础上发展起来的,是通过测量样品表面分子(原子)与AFM 微悬臂探针之间的相互作用力,来观测样品表面的形貌。AFM 与STM 的主要区别是以1 个一端固定而另一端装在弹性微悬臂上的尖锐针尖代替隧道探针,以探测微悬臂受力产生的微小形变代替探测微小的隧道电流。其工
原子力显微镜(AFM)分类
在原子力显微镜(AFM)成像模式中,根据针尖与样品间作用力的不同性质可分为:接触模式,非接触模式,轻敲模式。 (1)接触成像模式:针尖在扫描过程中始终同样品表面接触。 针尖和样品间的相互作用力为接触原子间电子的库仑排斥力(其力大小为10-8~10-6N)。优点为图像稳定,分辨率高,缺点为由于
原子力显微镜的原理
原子力显微镜是用来研究包括绝缘体在内的固体材料表面结构的分析仪器。主要用于测量物质的表面形貌、表面电势、摩擦力、粘弹力和I/V曲线等表面性质,是表征材料表面性质强有力的新型仪器。另外此仪器还具有纳米操纵和电化学测量等功能。 原子力显微镜的原理: 原子力显微镜是利用原子间的相互作用力来
原子力显微镜仪器结构
在原子力显微镜(Atomic Force Microscope,AFM)的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统。力检测部分在原子力显微镜(AFM)的系统中,所要检测的力是原子与原子之间的范德华力。所以在本系统中是使用微小悬臂(cantilever)来检测原子之间力的变化量。微悬
生物用原子力显微镜
生物用原子力显微镜是一种用于化学、生物学、材料科学领域的计量仪器,于2008年5月23日启用。 技术指标 X、Y轴水平扫描范围:≥100 μm Z轴范围:≥15 μm 噪音水平:1nm 针尖定位噪音水平(闭环下)X-Y方向:<0.2 nm RMS Z方向:<0.035 RMS 激光: 850
原子力显微镜探针简介
原子力显微镜(AFM),是一种具有原子分辨率的表面形貌、电磁性能分析的重要仪器。首台原子力显微镜在1985年研发成功,其模式可分为接触模式和轻敲模式等多种模式。AFM探针由于应用范围仅限于原子力显微镜,属于高科技仪器的耗材,应用领域不广,全世界的使用量也不多。主要的生产厂家分布在德国,瑞士,保加
液相原子力显微镜
液相原子力显微镜(liquid cell Force Microscope )对生物分子研究而言,对DNA 基本结构及功能的了解一直是科学家追求目标,早在1953 年DNA 双螺旋结构的发现后,使人了解遗传讯息如何在这当中传送,并且也将生物研究推展到分子生物的领域,为了解个别分子的功能,许多解析分子
原子力显微镜工作原理
原子力显微镜(AFM)是一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。原子力显微镜自从问世以来在生物学研究中有其不可替代的作用,以其样品制备简单,可在多种环境中运作,高分辨率等优势,成为生命科学研究中不可缺少的工具。 原子力显微镜工作原理: 通过检测待测样品表面和一个微型
原子力显微镜工作原理
一、原子力显微镜通过机械探针“触摸”样品表面表征其形貌并记录力学性质。它的工作原理类似人类用手指触摸物品表面,当探针靠近样品表面时,探针与样品表面间会产生一个相互作用力,此作用力会导致悬臂发生偏折。二、激光二极管产生的激光束通过透镜聚焦到悬臂背面,然后再反射到光电二极管上形成反馈。在扫描样品时,样品
原子力显微镜及其应用
原子力显微镜及其应用 原子力显微镜是以扫描隧道显微镜基本原理发展起来的扫描探针显微镜。原子力显微镜的出现无疑为纳米科技的发展起到了推动作用。以原子力显微镜为代表的扫描探针显微镜是利用一种小探针在样品表面上扫描,从而提供高放大倍率观察的一系列显微镜的总称。原子力显微镜扫描能提供各种类型样品
原子力显微镜的原理
原子力显微镜:是一种利用原子,分子间的相互作用力来观察物体表面微观形貌的新型实验技术.它有一根纳米级的探针,被固定在可灵敏操控的微米级弹性悬臂上.当探针很靠近样品时,其顶端的原子与样品表面原子间的作用力会使悬臂弯曲,偏离原来的位置.根据扫描样品时探针的偏离量或振动频率重建三维图像.就能间接获得样品表
原子力显微镜的原理
AFM 是在STM 基础上发展起来的,是通过测量样品表面分子(原子)与AFM 微悬臂探针之间的相互作用力,来观测样品表面的形貌。AFM 与STM 的主要区别是以1 个一端固定而另一端装在弹性微悬臂上的尖锐针尖代替隧道探针,以探测微悬臂受力产生的微小形变代替探测微小的隧道电流。其工作原理:将一个对极微
原子力显微镜的特点
原子力显微镜的特点 1.高分辨力能力远远超过扫描电子显微镜(SEM),以及光学粗糙度仪。样品表面的三维数据满足了研究、生产、质量检验越来越微观化的要求。 3.应用范围广,可用于表面观察、尺寸测定、表面粗糙测定、颗粒度解析、突起与凹坑的统计处理、成膜条件评价、保护层的尺寸台阶测定、层间绝缘膜的平整
原子力显微镜(AFM)综述
原子力显微镜(AFM)综述最早扫描式显微技术(STM)使我们能观察表面原子级影像,但是 STM 的样品基本上要求为导体,同时表面必须非常平整, 而使 STM 使用受到很大的限制。而目前的各种扫描式探针显微技术中,以原子力显微镜(AFM)应用是最为广泛,AFM 是以针尖与样品之间的属于原子级力场作用力
原子力显微镜的优点
原子力显微镜具有许多优点: ① 不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图; ② AFM不需要对样品的任何特殊处理,不会对样品会造成不可逆转的伤害; ③ 电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作,这样可以用来研究生物宏观分子,甚至活
原子力显微镜及其应用
原子力显微镜是以扫描隧道显微镜基本原理发展起来的扫描探针显微镜。原子力显微镜的出现无疑为纳米科技的发展起到了推动作用。以原子力显微镜为代表的扫描探针显微镜是利用一种小探针在样品表面上扫描,从而提供高放大倍率观察的一系列显微镜的总称。原子力显微镜扫描能提供各种类型样品的表面状态信息。与常规显微镜比较,
如何选购原子力显微镜
1.了解原子探针显微镜的基本原理 扫描隧道显微镜的原理 扫描隧道显微镜是根据量子力学中的隧道效应原理,通过探测固体表面原子中电子的隧道电流来分辨固体表面形貌的新型显微装置。 根据量子力学原理,由于电子的隧道效应,金属中的电子并不完全局限于金属表面之内,电子云密度并不是在表面边界处突