江南大学医学院EMBO:高血压发生机制和治疗新进展

在国家自然科学基金项目(项目编号:91439131,81622007)等资助下,江南大学医学院马鑫教授课题组在高血压发生新机制和治疗新策略的研究中取得重要进展。相关研究成果以“Treatment of Hypertension by Increasing Impaired Endothelial TRPV4-KCa2.3 Interaction”(增强血管内皮受损的离子通道TRPV4-KCa2.3复合体相互作用治疗高血压)为题,于2017年11月7日发表在EMBO Molecular Medicine(《欧洲分子生物学学会期刊:分子医学》),江南大学马鑫教授为文章的通讯作者,何冬旭、潘琼希、陈震和孙春原为共同第一作者。 心脑血管疾病是威胁我国民众健康的“头号杀手”,高血压是导致重大心脑血管疾病的重要危险因素之一。高血压不但发病率不断攀升,年轻化趋势更为明显。因此,深入研究高血压的发生机制和发展新的干预策略,具有重要的现实意......阅读全文

Cell:离子通道的“阴阳调控系统”

  来自约翰霍普金斯大学的研究人员报道称,发现一种常见蛋白质在控制离子通道的开关上起着与以往认为的完全不同的作用。  钠离子通道和钙离子通道是细胞上非常关键的门户,允许钠离子和钙离子进入细胞。许多重要的生命过程都依赖于正确的钠离子和钙离子浓度,例如健康大脑中的信息交流和心脏收缩。以及许多其他的过程。

电压门控离子通道的结构组成

电压门控离子通道(Voltage-gated Ion Channel)主要有钠、钾、钙等离子通道,通常由同一亚基的四个跨膜区段围成孔道,孔道中有一些带电基团(电位敏感器)控制闸门。

离子通道型受体的功能介绍

离子通道型受体(ionotropic receptor),离子通道型受体是一类自身为离子通道的受体。

生物膜离子通道的研究

在生物电产生机制的研究中发现了生物膜对离子通透性的变化。1902年J.伯恩斯坦在他的膜学说中提出神经细胞膜对钾离子有选择透过性。1939年A.L.霍奇金与A.F.赫胥黎用微电极插入枪乌贼巨神经纤维中,直接测量到膜内外电位差。1949年A.L.霍奇金和B.卡茨在一系列工作基础上提出膜电位离子假说,认为

Cell解决离子通道的重要争议

  钠离子通道和钙离子通道是细胞上非常关键的门户,允许钠离子和钙离子进入细胞。许多重要的生命过程都依赖于正确的钠离子和钙离子浓度,例如健康大脑中的信息交流和心脏收缩。日前科学家们发现,细胞的钠离子通道和钙离子通道采用相同的方式,对离子的流入量进行控制。这项发表在Cell杂志上的成果,将有助于人们开发

院士伉俪Cell深度解析离子通道

  来自加州大学旧金山分校,霍德华休斯医学院等处的研究人员利用TMEM16F敲除小鼠模型,发现了细胞质膜上出现磷脂紊乱的一种新机制,磷脂紊乱是血小板凝固过程中血小板激活的一个关键前步骤,相关成果公布在Cell杂志上,在网络版Cell杂志上还可以观看到对文章几位作者的专访视频。   领导这一研究的是

离子通道型受体的基本介绍

离子通道型受体(ionotropic receptor),离子通道型受体是一类自身为离子通道的受体。这种离子通道受体与受电位控制的离子通道不同,它们的开放或关闭直接接受化学配体的控制,这些配体主要为神经递质。离子通道受体信号转导的最终作用是导致了细胞膜电位改变,即是通过将化学信号转变成为电信号而影响

高血压的分级

  一般情况下,理想的血压为120/80mmHg,正常血压为130/85mmHg以下,130-139/85-89mmHg为临界高血压,为正常高限;140—159/90—99mmHg为高血压Ⅰ期,此时机体无任何器质性病变,只是单纯高血压;160—179/100—109mmHg为高血压Ⅱ期,此时有左

高血压常规治疗

【一般资料】男性,21岁,职员【主诉】发作性头痛2年,加重3个月【现病史】患者2年前体检时发现血压升高,具体不详平素头痛,头胀,恶心,呕吐,无头晕,近1年来血压控制不稳,最高可达220/125mmHg,近3个月因熬夜,头痛头胀加重,偶有恶心,呕吐,入院时见发作性头痛头胀,恶心,呕吐,偶有胸闷,平素眠

高血压诊疗攻略

  高血压是临床常见病,无论哪个科室都能碰到,那么问题来了,当你收治的患者疑似高血压或者已经确诊高血压的时候,你该怎么处理呢?近日,在 Practice Update 网站上,来自美国西奈山心脏研究所的 Ronald 博士分享了个人对高血压的诊疗经验,内容详实,值得广大医生学习!    怎么诊断

世界高血压日|再聊高血压诊断界值下调风波

原文地址:http://news.sciencenet.cn/htmlnews/2023/5/500771.shtm

世界高血压日:高血压常见误区-你中招了吗?

  5月17日是世界高血压日。近年来,我国高血压的患病率逐年上升。很多自我感觉身体状况良好的中年人甚至是青年人,也戴上了高血压的“帽子”。  “高血压是指以体循环动脉血压增高为主要特征,可以伴有心脏、大脑、肾脏等器官的功能或器质性损害的一种临床综合征。”首都医科大学附属北京友谊医院心血管中心黄榕翀教

一例儿童高血压合并高血压危象病例分析

患儿,男,10岁,46 kg,以头部外伤后右侧肢体软瘫1 d收入院。入院前1 d突发头晕头痛,继之倒地撞伤头部,3 h后出现右侧肢体瘫痪,渐加重,不伴有意识障碍及抽搐。无肾脏疾病病史,无多汗、消瘦病史,无糖皮质激素及儿茶酚胺类药物应用史,运动耐力良好,智力发育正常,无高血压家族史。查体:左上肢血压2

解开25年的谜团!揭秘导致罕见高血压综合征基因突变!

  25年前,一种罕见的遗传高血压在澳大利亚的一个家庭被发现。然而它的遗传因素却一直没有解释清楚。通过使用现代测序手段,一个由柏林健康研究所约翰娜科万特教授Ute Scholl领导的研究团队成功检测到了一个新的疾病基因突变(CLCN2)出现在这个家庭及其他几个家庭中,而正是这种突变导致了一种家族性醛

离子通道型受体的基本概念

离子通道型受体(ionotropic receptor)  ,离子通道型受体是一类自身为离子通道的受体。这种离子通道受体与受电位控制的离子通道不同,它们的开放或关闭直接接受化学配体的控制,这些配体主要为神经递质。离子通道受体信号转导的最终作用是导致了细胞膜电位改变,即是通过将化学信号转变成为电信号而

新型阳离子通道TRIC研究取得进展

  钙离子作为第二信使,在细胞生命活动中发挥重要作用。肌浆网/内质网膜上RyR受体和IP3R是钙离子释放的重要通道,而SERCA蛋白是钙库吸收钙离子的重要离子泵。这些蛋白质机器的顺利发挥功能有赖于一系列离子通道的共同参与和协同完成。新型离子通道TRIC在钙离子释放过程中提供反向离子电流,帮助钙离子顺

生物膜离子通道的研究方法

离子通道结构和功能的研究需综合应用各种技术,包括:电压和电流钳位技术、单通道电流记录技术、通道蛋白分离、纯化等生化技术、人工膜离子通道重建技术、通道药物学、基因重组技术及一些物理和化学技术。

递质门控离子通道的基本概念

中文名称递质门控离子通道英文名称transmitter-gated ion channel定  义神经和肌细胞突触后膜结合上专一性的细胞外神经递质才开放的离子通道。具有将化学信号转变为电信号的功能。能使突触后质膜的通透性发生改变,从而引起膜电位改变,促使神经冲动传递下去。应用学科细胞生物学(一级学科

新型阳离子通道TRIC研究取得进展

  钙离子作为第二信使,在细胞生命活动中发挥重要作用。肌浆网/内质网膜上RyR受体和IP3R是钙离子释放的重要通道,而SERCA蛋白是钙库吸收钙离子的重要离子泵。这些蛋白质机器的顺利发挥功能有赖于一系列离子通道的共同参与和协同完成。新型离子通道TRIC在钙离子释放过程中提供反向离子电流,帮助钙离子顺

生物膜离子通道的功能特点

活体细胞不停地进行新陈代谢活动,就必须不断地与周围环境进行物质交换,而细胞膜上的离子通道就是这种物质交换的重要途径。人们已经知道,大多数对生命具有重要意义的物质都是水溶性的,如各种离子,糖类等,它们需要进入细胞,而生命活动中产生的水溶性废物也要离开细胞,它们出入的通道就是细胞膜上的离子通道。

中科院Cell发现重要离子通道

  来自中科院、克利夫兰州立大学、清华大学的研究人员证实,TMCO1是一个内质网Ca2+过载激活的Ca2+通道。这一重要的研究发现发布在5月19日的《细胞》(Cell)杂志上。  中科院动物研究所的唐铁山(Tie-Shan Tang)研究员及克利夫兰州立大学周爱民(Aimin Zhou)教授是这篇论

科学家破解离子通道难题

  5月13日,国际期刊Cell Research 在线发表了由中国科学院上海药物研究所研究员高召兵和中国科学院生物物理研究所研究员徐涛团队联合研究的最新科研成果。该项工作从全新角度研究并诠释了“一个电压门控钾离子通道需要几个电压感受单元”这一领域内极受关注的问题。  电压门控钾离子通道包括40余个

生物膜离子通道的功能特征

离子通道依据其活化的方式不同,可分两类:一类是电压活化的通道,即通道的开放受膜电位的控制,如Na+、Ca2+、Cl-和一些类型的K+通道;另一类是化学物活化的通道,即靠化学物与膜上受体相互作用而活化的通道,如 Ach受体通道、氨基酸受体通道、Ca2+活化的K+通道等。钠通道各种生物材料中,与电兴奋相

自由基调控离子通道的研究

氧自由基(FORs)是生物体生命活动过程中产生的物质,在动物体中引起许多重要的生物化学及生理学现象。FORs作用于离子通道及受体复合物引发信号级联反应对细胞内代谢活动进行调控。研究发现,伴随着植物生长、激素活动及胁迫应激等不同生命过程,FORs形成并逐渐累积,同时累积的还有胞内钙离子。因此,研究人员

离子通道型受体的基本概念

离子通道型受体(ionotropic receptor) ,离子通道型受体是一类自身为离子通道的受体。

电压门控离子通道研究取得重要进展

  电压门控钠离子通道简称“钠通道”位于细胞膜上,能够引发和传导动作电位,参与神经信号传递、肌肉收缩等重要生理过程。 钠通道的异常会导致诸如痛觉失常、癫痫、心率失常等一系列神经和心血管疾病。另一方面,很多已知的生物毒素以及临床上广泛应用的麻醉剂等小分子均通过直接作用于钠通道发挥作用。因此,钠通道是诸

关于芋螺毒素的离子通道介绍

  电压门控离子通道超家族是由一大族结构相似的膜结合蛋白组成的,它们受跨膜电压变化的激活。这些蛋白质对单价阳离子具有不同的选择性,按照惯例被分为Ca2+,Na+,和K+通道。这些离子通道的最重要的生理作用是促使细胞电信号的产生、调整和转换。电压门控离子通道的主要孔洞形成α-亚基是由含有4个同源结构域

生物膜离子通道的功能特征

离子通道依据其活化的方式不同,可分两类:一类是电压活化的通道,即通道的开放受膜电位的控制,如Na+、Ca2+、Cl-和一些类型的K+通道;另一类是化学物活化的通道,即靠化学物与膜上受体相互作用而活化的通道,如 Ach受体通道、氨基酸受体通道、Ca2+活化的K+通道等。钠通道各种生物材料中,与电兴奋相

Science首次发现光控阴离子通道

  亿万年前,当一个真核细胞捕获了一种红藻后,Guillardia theta海藻就形成了。近期一组研究人员在这种藻类中发现了首个光控负离子通道:Anion Channel Rhodopsins,并利用这种通道介导神经元沉默,相比于目前已有的最高效光遗传蛋白,这种新方法只需其千分之一的光强度,而且速

生物膜离子通道的功能特征

  离子通道依据其活化的方式不同,可分两类:一类是电压活化的通道,即通道的开放受膜电位的控制,如Na+、Ca2+、Cl-和一些类型的K+通道;另一类是化学物活化的通道,即靠化学物与膜上受体相互作用而活化的通道,如 Ach受体通道、氨基酸受体通道、Ca2+活化的K+通道等。  钠通道  各种生物材料中