高光谱图像成像原理

光源相机(成像光谱仪+ccd)装备有图像采集卡的计算机是高光谱成像技术的硬件组成,其光谱的覆盖范围为200-400nm,400-1000nm,900-1700nm,1000-2500nm。其中光谱相机的主要组成部分为准直镜,光栅光谱仪,聚焦透镜以及面阵ccd。 其扫描过程是当ccd探测器在光学焦面的垂直方向上做横向扫描(x),当横向的平行光垂直入射到投身光栅是就形成了光栅光谱,这是象元经过高光谱仪在ccd上得出的数据,它的横向式x方向上的像素点也就是扫描的象元,它的总想是各象元对应的信息。在检测系统输送前进是排列的他测器完成纵向扫面(y)。综合扫描信息即可得到物体的三围高光谱数据。......阅读全文

几种光谱仪器光源的更换方法

  购买了光谱仪器的用户可能会对光源的更换有所感触,光源可以说是光谱类仪器的主要损耗部件了,您是否遇到过如下烦恼——仪器出保修期了,而此时需要更换光源,请厂家的工程师更换费用多多。其实您大可不必对此烦恼,电脑可以 DIY,更换光源同样可以。这就象给车胎打点气一样容易,关键要弄清哪部分是不能

拉曼光谱有几种激光光源

  1. 氩离子、半导体、氦氖  2. 可见光激光器应用最多的是氩离子激光器,可产生10种波长的激光,其中最强的是488纳米(蓝光)和514纳米(绿光)激光器,现在最为常用,性能十分稳定的是514纳米激光器;另外,532纳米固体二极管泵浦激光器、632.8纳米(红光)、780纳米等可见光激光器;以及

拉曼光谱有几种激光光源

1. 氩离子、半导体、氦氖2. 可见光激光器应用最多的是氩离子激光器,可产生10种波长的激光,其中最强的是488纳米(蓝光)和514纳米(绿光)激光器,现在最为常用,性能十分稳定的是514纳米激光器;另外,532纳米固体二极管泵浦激光器、632.8纳米(红光)、780纳米等可见光激光器;以及785纳

原子发射光谱的光源有哪些

原子发射光谱的光源有:直流电弧光源低压交流电弧光源,其中ICP光源具有灵敏度高,线性范围广的特点的原因:有直流电弧光源低压交流电弧光源,高压火花光源电感耦合等光源,特点是温度高,惰性气氛,原子化条件好,有利于难熔化合物的分解和元素激发,有很高的灵敏度和稳定性。光纤传感器的基本工作原理是将来自光源的光

线光源原子吸收光谱分光器

  在线光源原子吸收光谱分光系统中,测量原子吸收所需的高分辨率由辐射源的窄线发射提供,单色仪只需从灯发射的其他辐射中分辨出分析线。这通常可以通过0.2-2 nm的带通来实现,即中等分辨率单色仪。使线光源原子吸收光谱法元件特定的另一个特征是初级辐射的调制和调谐到相同调制频率的选择性放大器的使用,如Al

TOF相机是如何测量光子在光源与被测物之间的距离的?

TOF相机即Time of Fight Camera,是基于光子飞行时间测距进行成像,是一种主动照明成像装置。通过自身系统发出照明光,对被测场景照明,测量光子在光源与被测物之间的距离。TOF相机与普通机器视觉成像过程也有类似之处,都是由光源、光学部件、传感器(TOF芯片)、控制电路以及处理电路等几部

高光谱荧光测试系统在枸杞新鲜判别的应用(一)

基本原理:荧光是一种光致发光的冷发光现象。当某种常温物质经特定波长的入射光照射,其分子吸收光能后从基态进入激发态,并且立即退激发并发出出射光,原理如图所示。通常出射光的波长比入射光的波长更长,且多处于可见光波段。系统使用高灵敏度、高信噪比、高像素Scoms相机作为探测单元,使用高光谱分辨率的透射式光

关于近红外高光谱成像光谱仪的简介

  近红外高光谱成像光谱仪是一种用于物理学领域的分析仪器,于2012年12月31日启用。  一、近红外高光谱成像光谱仪的技术指标:狭缝尺寸:30微米; 成像分辨率:3.64纳米; 光谱范围:900-1700纳米; 数值孔径:2。  二、近红外高光谱成像光谱仪的主要功能:光谱仪核心部分包括均匀光源、光

多光谱相机可进行地表物质成分检测吗

可以。多光谱相机可以用于地表物质成分的检测,多光谱相机是一种能够捕捉不同波段(即不同颜色)的光谱信息的设备,它可以用于地球观测、农业、环境监测、矿产勘探等领域。

无人机多光谱相机在农业上的应用

在农作物长势监测方面。农业上使用的无人机种类繁多,有无人直升机、固定翼无人机、多旋翼无人机等多种机型。随着“无人机+”时代的不断深入,无人机产业可以应用到各行各业,小到消费级的航拍摄影,大到无人机的行业应用。人们让无人机搭载高分辨率CCD相机、热红外相机、多镜头相机等各种传感器系统获取数据,从而满足

高光谱成像光谱扫描的概念

高光谱成像是一种新兴的技术,可以在仪器的视场范围内同时快速测量和分析多个物体的光谱构成。这些成像系统用在多个工业和商业领域,比如高速在线检测和严密的质量控制工序。一般说来,在加工应用中捕捉精确的光谱信息,面临着机器视觉系统简单或单点光谱(single-point)测量的问题。这些仪器系统的成本很高,

比较分析多光谱和高光谱图像

重磅干货,第一时间送达当你阅读这篇文章时,你的眼睛会看到反射的能量。但计算机可以通过三个通道看到它:红色、绿色和蓝色。如果你是一条金鱼,你会看到不同的光。金鱼可以看到人眼看不见的红外辐射。大黄蜂可以看到紫外线。同样,人类无法用我们眼睛看到紫外线辐射。(UV-B伤害了我们)现在,想象一下,如果我们能够

高光谱成像原理

高光谱成像是一种遥感技术,它可以通过获取地物的高光谱图像来实现物质识别、分类和定量分析等目标。高光谱成像技术的原理是基于地物物质吸收、反射和辐射特性的不同而实现的。高光谱成像技术的原理主要包括以下几个方面:一、光谱分辨率高光谱成像技术采用的是光谱分辨率比较高的成像仪器,它能够获取较高的空间分辨率和光

高光谱图像成像原理

  光源相机(成像光谱仪+ccd)装备有图像采集卡的计算机是高光谱成像技术的硬件组成,其光谱的覆盖范围为200-400nm,400-1000nm,900-1700nm,1000-2500nm。其中光谱相机的主要组成部分为准直镜,光栅光谱仪,聚焦透镜以及面阵ccd。  其扫描过程是当ccd探测器在光学

高光谱遥感的特点

  1)波段多且宽度窄能够使得高光谱遥感探测到别的宽波段无法探测到的物体。  (2)光谱响应范围更广和光谱分辨率高使得它能够更加精细的发硬出被探测物的微小特征。  (3)它可以提供空间域和光谱域信息也就是“谱像合一”。  (4)数据量大和信息冗余多,由于高光谱数据的波段多,其数据量大,而且和相邻波段

科普带你了解高光谱

高光谱遥感起源于20世纪70年代初的多光谱遥感,它将成像技术与光谱技术结合在一起,在对目标的空间特征成像的同时,对每个空间像元经过色散形成几十乃至几百个窄波段以进行连续的光谱覆盖,这样形成的遥感数据可以用“图像立方体”来形象的描述。同传统遥感技术相比,其所获取的图像包含丰富的空间、辐射和光谱三重信息

实验室光谱仪器等离子体光源与激光光源

一、等离子体光源电感耦合等离子体(ICP)用作原子荧光的光源研究起始于20世纪60年代末。在随后的近十余年时间里,随着对 ICP 的研究和应用,将 ICP 用作原子荧光光源的研究也日渐增多。最初的研究认为,电感耦合等离子体光源具有许多优点,如强 度高、时间稳定性好、谱线宽度窄、几乎没有自吸;对很多待

原子吸收光谱法有几种光源

原子吸收光谱法的光源有:蒸气放电灯、无极放电灯和空心阴极灯.空心阴极放电灯是目前应用最广的理想的锐线光源

原子吸收光谱法有几种光源

原子吸收光谱法的光源有:蒸气放电灯、无极放电灯和空心阴极灯.空心阴极放电灯是目前应用最广的理想的锐线光源

关于拉曼光谱仪的光源简介

  它的功能是提供单色性好、功率大并且最好能多波长工作的入射光。目前拉曼光谱实验的光源己全部用激光器代替历史上使用的汞灯。对常规的拉曼光谱实验,常见的气体激光器基本上可以满足实验的需要。在某些拉曼光谱实验中要求入射光的强度稳定,这就要求激光器的输出功率稳定。

连续光源原子吸收光谱分光器介绍

  当连续辐射源用于原子吸收光谱测量时,使用高分辨率分光器是必不可少的。分辨率必须等于或优于原子吸收线的半宽度(约2 pm),以避免校准图的灵敏度和线性损失。高分辨率连续光源原子吸收光谱分光器的研究是由是由美国的O'Haver和Harnly团队率先开展的,他们也为这项技术开发了(迄今为止)唯

闲聊原子吸收光谱法之光源

现在,越来越多的同事开始抛弃繁琐的经典分析手续,投身到仪器分析的洪流中。此类的书籍也很多,但是对于没有系统学习过的同事来说,仪器分析既简单又复杂。简单是因为分析手续较之经典化学分析手续简单,复杂是因为不了解实验的背景,出现问题后难以找到问题。 今天我们在这里闲聊一下原子

闲聊原子吸收光谱法之光源

    现在,越来越多的同事开始抛弃繁琐的经典分析手续,投身到仪器分析的洪流中。此类的书籍也很多,但是对于没有系统学习过的同事来说,仪器分析既简单又复杂。简单是因为分析手续较之经典化学分析手续简单,复杂是因为不了解实验的背景,出现问题后难以找到问题。    今天我们在这里闲聊一下原子吸收光谱法和仪器

原子吸收光谱法有几种光源

原子吸收光谱法的光源有:蒸气放电灯、无极放电灯和空心阴极灯。空心阴极放电灯是目前应用最广的理想的锐线光源。 其结构如图:  空心阴极灯是一种气体放电管:钨棒构成的阳极和一个圆柱形的空心阴极,空心阴极是由待测元素的纯金属或合金构成,或者由空穴内衬有待测元素的其它金属构成。 当在正负电极上施加适当电压(

原子发射光谱常用的5大光源

  光源作为原子发射光谱仪主要部件之一,是决定光谱分析灵敏度和准确度的重要因素,它分为电弧光源、火花光源以及近年发展的电感耦合等离子体光源和辉光放电光源。各光源的原理和特点又是什么呢?  原子发射光谱仪由光源、分光系统、检测系统和数据处理系统四个部分组成。而光源是光谱仪检测主要的部分之一,光源的作用

ICP光谱仪光源的基体效应

基体效应是指试样主要成分变化对分析线强度和有关光谱背景的影响,它是ICP光谱干扰效应的一种。基体效应的产生实际上是各种干扰效应的总和。基体效应的特点:1 基体效应的存在可造成分析线强度的增加或降低,增加谱线强度的基体干扰称曾敏效应,降低者称为抑制效应。2 基体与干扰元素(基体)种类有关,也与基体含量

电子科大研发高功率低相干性光源

近日,电子科技大学信息与通信工程学院教授饶云江团队在德国期刊《物理年鉴》上发表封面文章,题为《基于高功率多模光纤随机激光的无散斑成像研究》。该研究工作首次在国际上实现了输出功率>100W,散斑对比度低于人眼散斑感知阈值的多模光纤随机激光器。一直以来,随着无散斑成像在各个领域中的广泛应用,越来越多的应

原子吸收光谱和原子发射光谱的光源的区别

长话短说哈:不同金属具有特定波长的的吸收和发射光。原子吸收光谱是给待测金属离子一个特定波长的光(当然不同金属需要的光源不一样了),再根据郎伯-比尔定律测出金属的含量,也就是定量分析。原子发射光谱是给待测金属一系列波长的光,再检测待测金属吸收了哪个波长的光,自然也就测出是哪种金属了,所谓的定性分析。

高光谱图像的特点描述

  高光谱遥感的发展得益于成像光谱技术的发展与成熟。成像光谱技术是集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体的综合性技术。其最大特点是将成像技术与光谱探测技术结合,在对目标的空间特征成像的同时,对每个空间像元经过色散形成几十个乃至几百个窄波段以进行连续的光谱覆盖 [2]

高光谱遥感特点有哪些?

  高光谱遥感(hyperspectral remote sensing)是高光谱分辨率遥感(highspectral resolution remote sensing)的简称,是在电磁波谱的可见光、近红外、中红外和热红外波段范围内,获取许多非常窄、光谱连续影像数据的技术。   高光谱遥感源于2