美国麦克仪器助力科学研究取得突破
中科院大连化物所邓德会副研究员和包信和院士带领的研究团队,在长期研究二维催化材料和纳米限域催化的基础上,成功地将FeN4结构限域在纳米石墨烯骨架中,使其具有优异的催化活性和稳定性,能够在室温甚至0℃高选择性地催化氧化苯生成苯酚。这一研究结果给低温下高效选择氧化的非贵金属催化剂的设计提供了新的思路和借鉴,同时对于石墨烯制备技术的升级和产业化生产也是利好。 该研究团队经过5年多的探索,通过高能球磨酞菁铁分子与石墨烯纳米片,通过控制球磨条件,巧妙地利用N原子与石墨烯的C原子形成强的共价键,使N原子作为一个“锚”来稳定配位不饱和的铁中心。该研究团队还与东南大学、中科院物理所、加拿大等多方合作,实现了纳米石墨烯限域单原子铁催化剂研究的突破,首次观察到FeN4在石墨烯骨架中的原子结构。进一步的理论计算表明,形成的FeN4结构能够在石墨烯骨架中有效稳定,并且能高效分解双氧水,进而可以在室温甚至0℃下催化苯氧化生成苯......阅读全文
四(3’羧基丙酰胺基)酞菁铁的合成及其性质研究
别以3-硝基邻苯二甲酸和4-硝基邻苯二甲酰亚胺为前体,经过三步反应,制备了两类水溶性酞菁铁衍生物1,8,15,22-四(3’-羧基丙酰胺基)酞菁铁(83)和2,9,16,23-四(3’-羧基丙酰胺基)酞菁铁(b3),并用FT—IR,UV—Vis对其结构进行了表征.测定了a3,b3在DMSO以及在不同
化物所包信和院士团队完成纳米团簇阵列构建
近日,中国科学院大连化学物理研究所催化基础国家重点实验室纳米与界面催化研究组(502组)包信和院士、傅强研究员和宁艳晓副研究员团队在负载纳米团簇催化剂的结构控制和微观表征方面取得新进展,利用金属—氧化物相互作用调控金属纳米团簇的尺寸与稳定性,揭示了载体氧化物表面氧原子p-带中心可用于定量描述金属—氧
工信部将组织实施“石墨烯+”行动
9月14日从工信部获悉,“石墨烯改性防腐涂料技术研讨暨新产品推介会”近日在江苏如东召开。在会议上,工信部原材料工业司提出,下一步将组织实施“石墨烯+”行动,构建上下游贯通的石墨烯产业链,推动首批次示范应用。 会议提出,下一步,原材料工业司将继续坚持产学研用相结合,组织实施“石墨烯+”行动,利用
单分子器件电子输运通道调控及其巨磁阻效应研究获进展
信息技术的成功发展离不开电子学器件的小型化。对器件小型化的追求促使了人们对单分子器件的研究和理解,以求最终实现以单分子为基本单元构筑电路。单分子器件已经成了在纳米尺度研究各种有趣物理现象和机制的平台。在原子尺度上对单个原子/分子的量子态实现精确操纵以及对其物性实现可控调制一直是凝聚态物理及其应用
低温光学扫描探针显微镜系统研发及几种二维材料
二维原子/分子晶体材料因独特的物理性质而受到广泛关注。 由于分子束外延生长技术可以用来制备高质量的二维原子/分子晶体材料,而扫描探针显微学因其超高空间分辨率可以对材料的生长质量进行表征,同时还可以获得其电子结构等方面的信息,因此分子束外延生长与扫描探针显微学相结合是研究二维原子
卟啉与酞菁催化是什么?
1979年,Groves. J. T. 等利用亚碘酰苯(PhIO)-金属卟啉人工模拟细胞色素P-450单充氧酶体系,首次实现了在温和条件下催化烷烃羟基化反应以来,仿生酶催化的研究成果层出不穷,现已出现第二代、第三代金属卟啉仿生酶催化剂。在温和条件下,它们能高选择性催化氧化烃类化合物,同时还发现类
卟啉与酞菁催化简介
1979年,Groves. J. T. 等利用亚碘酰苯(PhIO)-金属卟啉人工模拟细胞色素P-450单充氧酶体系,首次实现了在温和条件下催化烷烃羟基化反应以来,仿生酶催化的研究成果层出不穷,现已出现第二代、第三代金属卟啉仿生酶催化剂。在温和条件下,它们能高选择性催化氧化烃类化合物,同时还发现类
卟啉与酞菁催化简介
金属卟啉催化剂1979年,Groves. J. T. 等利用亚碘酰苯(PhIO)-金属卟啉人工模拟细胞色素P-450单充氧酶体系,首次实现了在温和条件下催化烷烃羟基化反应以来,仿生酶催化的研究成果层出不穷,现已出现第二代、第三代金属卟啉仿生酶催化剂。在温和条件下,它们能高选择性催化氧化烃类化合物,同
合肥研究院成功制备纳米零价铁/石墨烯复合材料
近期,中国科学院合肥物质科学研究院等离子体物理研究所应用等离子体研究室科研人员采用H2/Ar混合气体等离子体成功制备了纳米零价铁/石墨烯复合材料(NZVI/rGOs),并应用于变价态易溶性放射性元素和金属离子的吸附与还原。 纳米零价铁具有粒径小、反应活性高、还原能力强等优点。纳米零价铁对废水中
酞菁铁碳纳米管复合物为阴极催化剂的微生物燃料电池
以循环伏安法(CV)考察酞菁铁/碳纳米管氧还原(ORR)催化行为,并构建以磷酸缓冲溶液(PBS)和葡萄糖为阳极原料,酞菁铁/碳纳米管复合物为阴极氧气还原催化剂的双室型微生物燃料电池(MFCs)。结果表明:(1)在中性介质中,对氧还原的电催化性能要比商品化的铂碳催化剂还原电位正移了44 mV。(2
石墨烯可“剪”成纳米机器
剪纸艺术可以将纸张剪成复杂的图案,比如雪花。美国康奈尔大学的物理学家也变身成为剪纸艺人,不过,他们手中的“纸张”是只有一个原子厚的石墨烯,他们剪出来的可能是世界上最小的机器。 康奈尔大学卡夫利纳米尺度科学研究所所长保罗·麦克尤恩带领的研究团队在发表于最新的《自然》杂志的论文中,展示了如何将只有
氧化石墨烯和石墨烯性能的区别
氧化石墨烯和石墨烯性能的区别采用改进的Hummers法制备了氧化石墨烯,将其采用水合肼还原获得石墨烯,以氧化石墨烯和石墨烯为吸附剂,分别采用透射电镜(TEM),傅里叶变换红外光谱(FT-IR),拉曼光谱(RS)和X射线衍射光谱(XPS)对阴阳离子的不同吸附性能进行了分析表征.结果表明:两吸附剂对罗丹
酞菁铁表面活性剂薄膜修饰电极及其催化性能
将酞菁铁(FePc)掺入阳离子表面活性剂双十二烷基二甲基溴化铵(DDAB)的氯仿溶液,并涂布于热解石墨电极表面,待氯仿挥发后即制得FePc-DDAB薄膜电极.循环伏安实验表明,在KBr溶液中该薄膜电极有2对还原氧化峰,第1对峰的Epc1=0.64V,Epa1=-0.29V(vs.SCE),第2对峰的
酞菁铁(Ⅱ)与分子氧反应中轴向配体的作用—动力学考察
通过电子光谱的变化,研究了不同轴向配体(DMSO、DMF和THF)对酞菁铁(Ⅱ)吸氧动力学的影响。实验表明,在DMSO体系中反应有诱导期和明显的可逆性,浓度随时间的变化表观上呈“S”形曲线,表明反应中有自催化过程,在DMF和THF体系中,浓度随时间的变化呈简单双曲线型。在分别对FePc/DMSO体系
石墨烯和石墨的区别,联系
石墨烯和石墨的区别如下:一、性质不同1、石墨烯:一种由碳原子以sp²杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。2、石墨:是碳的一种同素异形体。二、用处不同1、石墨烯:具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材料
新疆理化所揭示纳米铁基/石墨烯基类芬顿催化机理
石墨烯材料具有独特的物理和化学性质,在能源、催化和环境等领域有广阔的应用前景。近年来,铁基磁性纳米粒子因其价格低廉、可磁性分离、催化活性好等优点而被用于设计和制备非均相类Fenton催化剂。经典的芬顿 Fenton (Fe2+/H2O2) 反应可以产生高活性的羟基自由(•OH),然而它在降解有机
包信和:接地气须“投桃报李”
作为中国科学院沈阳分院院长,物理化学家包信和算得上是中科院里最“接地气”的院士之一了。 “中科院各个分院很重要的一项工作就是院地合作,我在沈阳分院工作这些年,对科技与经济‘两张皮’这个问题的感触还是比较深的。”包信和说。 近年来,包信和带队跑遍了全国各地,河南煤化集团、扬
石墨烯上成功制备可控纳米孔
原文地址:http://news.sciencenet.cn/htmlnews/2017/9/387887.shtm俄罗斯国家研究型工艺大学(NUST MISIS)的专家,与其他国家物理学家组成的国际小组共同开展一系列快重离子辐照石墨烯实验。结果显示,可以通过这种方式在石墨烯上制备直径可控的纳米孔。
纳米波纹让石墨烯高效分解氢气
英国科学家的一项最新研究发现,石墨烯表面拥有奇特的纳米波纹,这使其能以比同等质量的现有最佳催化剂高100倍的效率分解氢气,有望实现更高性能的氢燃料电池,并提高很多工业过程的效率。相关研究刊发于最新一期《美国国家科学院院刊》。在最新研究中,“石墨烯之父”、曼彻斯特大学的安德烈·海姆及其同事发现,尽管石
美首次“种”出石墨烯纳米带
据物理学家组织网7月19日(北京时间)报道,美国科学家首次在金属上从头开始逐个原子地合成出了石墨烯纳米带——在熔炉中生长出的石墨烯的同轴六边形。发表在最新一期《美国化学会志》上的研究报告称,这种石墨烯“洋葱圈”有望用于锂离子电池和高级电子设备内。 该研究的领导者之一、莱斯大学的物理学家詹姆
纳米波纹让石墨烯高效分解氢气
英国科学家的一项最新研究发现,石墨烯表面拥有奇特的纳米波纹,这使其能以比同等质量的现有最佳催化剂高100倍的效率分解氢气,有望实现更高性能的氢燃料电池,并提高很多工业过程的效率。相关研究刊发于最新一期《美国国家科学院院刊》。在最新研究中,“石墨烯之父”、曼彻斯特大学的安德烈·海姆及其同事发现,尽管石
美开发出DNA石墨烯纳米结构
据物理学家组织网4月11日(北京时间)报道,美国麻省理工学院和哈佛大学的科学家,利用DNA构建出具有独特电子特性的石墨烯纳米结构,向大规模生产石墨烯电子芯片迈出了非常重要的一步。该研究成果发表在近期《自然·通讯》杂志上。 科学家通过控制DNA序列,操纵分子形成不同折叠形状的DNA纳米结构,
石墨烯纳米带材料研究取得进展
石墨烯纳米带作为一维石墨烯材料,因其非零带隙和可调控的能带结构,在半导体器件、自旋电子学及量子技术等领域具有应用前景。通过自下而上的表面合成策略,可实现对其结构的精准构筑与性质的精细调控。然而,目前石墨烯纳米带的电子结构与性质调控主要依赖其π电子体系,尚未有研究在纳米带中引入d电子对其进行改性。卟啉
碳纳米材料家族增加新成员——弯曲纳米石墨烯
继球状的富勒烯、筒状的碳纳米管和片状的石墨烯之后,碳纳米材料家族又有了新成员。日本研究人员开发出一种像马鞍一般弯曲的碳纳米分子,有望在电子元件和医疗等领域得到应用。 名古屋大学教授伊丹健一郎率领的研究小组在15日的《自然・化学》杂志网络版上报告了这一成果,他们将这种碳纳米分子命名
包信和院士纳米限域催化等项目获陈嘉庚科学奖
近日,2018年度陈嘉庚科学奖、陈嘉庚青年科学奖揭晓。其中中科院大连化学物理研究所/中国科学技术大学包信和院士的项目《纳米限域催化及其在甲烷直接转化中的应用》获陈嘉庚化学科学奖,中科院上海有机化学研究所研究员黄正获陈嘉庚青年科学奖化学科学奖、中科院上海药物研究所研究员吴蓓丽获陈嘉庚青年科学奖生命
石墨烯和石墨有什么区别
人们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯 石墨烯出现在实验室中是在2004年,当时,英国的两位科学家安德烈·杰姆和克斯特亚·诺沃塞洛夫发现他们能用一种非常简
石墨烯新结构形似海绵比铁硬
1月9日电 据英国《独立报》8日报道,美国麻省理工学院(MIT)的科学家通过按压并熔化石墨烯薄片,制造出迄今最轻质坚固的材料之一——一种多孔的三维石墨烯结构,其形状类似海绵,密度仅为铁的5%,但坚固程度为铁的10倍多。 石墨烯在二维形式时被认为是最坚固的材料,但研究人员一直很难将其二维形式下的
石墨烯新结构形似海绵比铁硬
据英国《独立报》1月8日报道,美国麻省理工学院(MIT)的科学家通过按压并熔化石墨烯薄片,制造出迄今最轻质坚固的材料之一——一种多孔的三维石墨烯结构,其形状类似海绵,密度仅为铁的5%,但坚固程度为铁的10倍多。 石墨烯在二维形式时被认为是最坚固的材料,但研究人员一直很难将其二维形式下的坚固强度
大连化物所纳米催化研究获新进展
近日,中科院大连化物所包信和研究员团队在碳纳米管对催化剂的束缚效应和对催化反应性能的调变作用的研究方面又取得了新进展。研究人员发现,采用湿化学方法将金属铁(Fe)粒子组装在碳纳米管的管腔内,用于催化合成气转化为液体燃料 (GTL) 反应,其催化活性有了明显提高。在相同反应条件下,与担载在碳管外壁的铁
包信和荣获德国Alwin-Mittasch奖
3月16日,在德国魏玛举行的第50届德国化学工程与生物技术协会催化学术年会上,中科院大连化物所包信和院士因在纳米催化和能源小分子催化转化研究方面取得杰出成就,被授予Alwin Mittasch奖,并在颁奖仪式上作了题为“New Horizons of C1 Chemistry”的大会特邀报告。