Antpedia LOGO WIKI资讯

英发现神经细胞中风期间自保机制

英国布里斯托大学的一项最新研究称,该校研究人员发现了人类大脑中某些神经细胞中风期间的自我保护机制,通过这一机制,这些神经细胞可以免受中风的损害。研究人员称,这一发现有助于科学家找到新方法来保护其他类型神经细胞免受中风损害,从而降低中风对病人身体的影响。该研究成果发表在最新一期的《神经科学期刊》上。 中风是一种急性脑血管病,发病时患者大脑血液供应中断,使得脑神经细胞无法获得氧气和养分而死亡,致使大脑认知功能的丧失,造成失语、瘫痪等症状。该病致残率和致死率都很高,且容易复发,是威胁人类健康的重要杀手。在英国中风是第三大致死疾病。 有研究表明,在中风时,并不是所有的脑神经细胞都会受到损害,而找到这些神经细胞免受损害的原因,就可以找出办法来保护其他的神经细胞。为找到部分脑神经细胞免受中风损害的机制,英国布里斯托大学的研究人员对人类大脑海马体中的两种类型神经细胞——CA1细胞和CA3细胞进行了研究分析。这两种......阅读全文

英发现神经细胞中风期间自保机制

  英国布里斯托大学的一项最新研究称,该校研究人员发现了人类大脑中某些神经细胞中风期间的自我保护机制,通过这一机制,这些神经细胞可以免受中风的损害。研究人员称,这一发现有助于科学家找到新方法来保护其他类型神经细胞免受中风损害,从而降低中风对病人身体的影响。该研究成果发表在最新一期的《神

大脑神经细胞也有老熟人

   当人们看到认识的人图片时,比如著名的网球运动员Roger Federer或女演员Halle Berry,特定的细胞就会在大脑中“发光”。近日,研究人员在《当代生物学》杂志上报告称,即使一个人看到熟悉的面孔或物体,但没有注意到它,这些细胞也会活跃。在这种情况下,唯一的区别在于,相比较观察者有意

大脑神经细胞也有“老熟人”

  当人们看到认识的人的图片时,比如著名的网球运动员Roger Federer或女演员Halle Berry,特定的细胞就会在大脑中“发光”。近日,研究人员在《当代生物学》杂志上报告称,即使一个人看到熟悉的面孔或物体,但没有注意到它,这些细胞也会活跃。在这种情况下,唯一的区别在于,相比较观察者有意识

脑神经细胞可权衡“代价”和“收益”

  人类是习惯性动物,喜欢日复一日地重复着同样的行为。美国麻省理工学院(MIT)的最新研究发现,习惯的养成不仅受到“寻求利益”的动机驱使,而且还受到“代价考量”制约;与“代价与利益”两大要因关联的神经元在大脑中发育成熟,最终导致习惯的养成。  MIT麦戈文大脑研究所教授安·格雷比尔等人通过对猴子等灵

用于大脑神经递质取样的微型神经探针

  来自特温特大学(University of Twente)的研究人员设计了一款微针,其中的微通道可用于从大脑局部区域提取少量液体样本。微针大约和人的头发丝一样粗。基于此项发明,神经科学家得以更快(几秒内)、更准确(微米级精度)地监测动态过程。该项研究成果被发表在著名科学期刊《芯片实验室》(Lab

德国研究蝇脑神经细胞取得成果

  蝇脑只有不到六分之一立方毫米,但苍蝇在飞行时却能大量且精确地处理眼睛接受的信息,其性能胜过超级电脑。为进一步解开蝇脑之谜,德国科学家成功研发了一种能够捕捉蝇脑神经细胞活动的研究方法。  德国马克斯·普朗克神经生物学研究所7月12日发表公报说,该所研究人员以果蝇为实验对象,用发光二极管显

日发现脑神经细胞死亡部分机制

  日本秋田大学一个研究小组13日发表报告说,他们在动物实验中发现了脑神经细胞死亡的部分机制。   秋田大学教授佐佐木雄彦领导的研究小组13日在英国《自然》杂志网络版上发表报告说,如果脑神经细胞内分解无用磷脂的酶无法发挥作用,神经细胞就会死亡,从而导致运动机能障碍。   

脑神经细胞怎链接 53个基因编写密码

  “世上没有两片完全相同的树叶”,人类大脑中上千亿个神经细胞也是如此,每一个细胞都有一串由蛋白分子群构成的 “密码”。上海交大昨天宣布,系统生物医学研究院吴强教授团队发现了大脑发育中这类蛋白分子编制“密码”的机制,有助于揭示自闭症、精神分裂、抑郁症等脑神经系统疾病的病因。相关成果日前登上了综合

神经胶质细胞可直接编程为脑神经细胞

  据报道,瑞典隆德大学的研究人员进行的实验表明,其他细胞可以在大脑中通过重新编程直接转化为神经细胞,这一成果标志着细胞疗法领域又迈出了重要一步。   细胞疗法的目标是要在体内形成新的细胞以治疗疾病。两年前,隆德大学的研究人员就对人类皮肤细胞(成纤维细胞)进行重编程,使其直接变身为可产生多巴胺的神

脑神经细胞怎链接53个基因编写密码

  “世上没有两片完全相同的树叶”,人类大脑中上千亿个神经细胞也是如此,每一个细胞都有一串由蛋白分子群构成的“密码”。上海交大12月5日宣布,系统生物医学研究院吴强教授团队发现了大脑发育中这类蛋白分子编制“密码”的机制,有助于揭示自闭症、精神分裂、抑郁症等脑神经系统疾病的病因。相关成果日前登上了综合