红外、碳硫分析联用判别聚砜类材料

《分析试验室》2008年S1期 红外、碳硫分析联用判别聚砜类材料 田共有 在对某聚砜类材料的定性分析中,首先通过红外光谱分析,确定该材料的主要成分为聚砜,利用聚砜材料含有较高的硫这一特性,同时聚芳砜(PAS)、聚醚砜(PES)在碳硫含量上存在量的差别,运用碳硫分析仪测定出未知物中的近似碳硫含量,与已知的两种聚砜材料聚芳砜、聚醚砜进行对照,从而确认出该未知材料为聚醚砜。通过实验可以确定,利用红外、碳硫分析联用来判别飓风类材料是一种有效的方法。【作者单位】:中国空空导弹研究院 洛阳471009【关键词】:定性分析;红外光谱;非金属材料【分类号】:O657.3【DOI】:CNKI:SUN:FXSY.0.2008-S1-094【正文快照】: 非金属材料的定性分析试验,在未知材料的识别、国产化工作中应用极为普遍,尤其是在国防工业体系,在新材料的自主研制生产、......阅读全文

光谱定性分析法分类及介绍

  光谱定性分析就是根据光谱图中是否有某元素的特征谱线(一般是最后线)出现来判断样品中是否含有某种元素。定性分析方法常有以下两种。(1)标准试样光谱比较法将要检出元素的纯物质或纯化合物与试样并列摄谱于同一感光板上,在映谱仪上检查试样光谱与纯物质光谱。若两者谱线出现在同一波长位置上,即可说明某一元素的

关于光谱仪的定性分析方法

   光谱仪是一种常用的光学仪器,可以将复杂的光分解为光谱线,具有性能稳定、使用安全可靠、维护简便等优点。光谱仪的定性分析方法用户都知道吗?下面小编就来具体介绍一下,希望可以帮助用户更好的应用产品。    光谱仪器的定性分析是指由于各种元素的原子结构不同,在光源的作用下都可以产生自己特征的光谱。如果

涨姿势-|-浅谈红外光谱(FTIR)的测试原理及其应用

  1  到底什么是FTIR?  红外光谱法(FTIR)是根据不同物质选择性吸收红外光区的电磁辐射进行结构分析,对各种吸收红外光的化合物的定量和定性分析的一种方法。  红外光谱法具有特征性强、测定快速、不破坏试样、试样用量少、操作简便、能分析各种状态的试样、分析灵敏度较高等优点。  2  FTIR能

红外光谱是什么光谱

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到

红外光谱是什么光谱

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到

红外光谱是什么光谱

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到

红外光谱是什么光谱

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到

红外光谱是什么光谱

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到

红外光谱是什么光谱

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到

红外光谱是什么光谱

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到

红外光谱是什么光谱

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱。又称分子振动光谱或振转光谱。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到

非金属材料试验机多项力学实验及分析

 非金属材料试验机适用于寻求材料力与形变关系的实验,可对金属,非金属的原材料、加工件、成品进行拉伸、弯曲、剥离、压缩、压陷、附着力、撕裂等多项力学实验及分析。    非金属材料试验机可对橡胶、塑料、塑胶、无纺布、纺织、尼龙、纤维、纳米材料、高分子材料、复合材料、包装带、纸张、电线电缆、光纤光缆、安全

红外光谱技术

这些年来医学有了很大的发展,越来越多的不治之症变得有可能。随着人类社会的不断发展,人们对于健康有了很大的关注,其中药用安全也是人们常常谈到的话题。对于咱们中国人来说,中医是我们特有的医疗方式。目前,“指纹图谱”被作为中药现代化的一个代表,炒作得热闹非常。内行人都知道,色谱、光谱、波谱这三种方法均可用

红外吸收光谱

  大多数材料会吸收红外光谱区域中波长为0.8 µm至14 µm的电磁辐射,这些波长是材料分子结构的特征。红外吸收光谱法是一种常见的化学分析工具,用于测量已穿过样品的红外光束的吸收率。红外光谱中吸收峰的位置是样品化学成分或纯度的特征,吸收峰的强度与该峰为特征的物质的浓度成正比。  红外光谱可用于气体

红外光谱是什么?红外光谱分区有什么依据

  红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱,又称分子振动光谱或振转光谱。  通常将红外光谱分为三个区域:近红外区(0.75~2.5μm)、中红外区(2.5~25μm)和远红外区(25~1000μm)。一般说来,

红外光谱是什么?红外光谱图怎么看

  红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱,又称分子振动光谱或振转光谱。  红外谱图的分区  按吸收峰的来源,可以将2.5~25μm的红外光谱图大体上分为特征频率区(2.5~7.7μm)以及指纹区(7.7~16

非金属材料拉力试验机的可测试项目说明

 非金属材料拉力试验机主要适用于金属及非金属材料的测试,如橡胶、塑料、电线电缆、光纤光缆、安全带、保险带、皮革皮带复合材料、塑料型材、防水卷材、钢管、钢材、型材、弹簧钢、轴承钢不锈钢(以及其它高硬度钢)、铸件、钢板、钢带、有色金属线材的拉伸、压缩、弯曲、剪切、剥离、撕裂、两点延伸(需另配引伸计)等多

常州非金属材料防火检测实验室获国家认证

  常州非金属材料防火检测实验室获国家认证 全省唯一  记者昨天(13日)从戚墅堰区发改局了解到,常州金标轨道交通技术服务有限公司的非金属材料防火检测实验室,已正式通过中国合格评定国家认可委员会(CNAS)的认可评审。  该实验室的质量管理体系和检测技术能力得到了国家权威机构的认可,其出具

非金属单质置换非金属单质的反应举例

氟气溶于水【2F2+2H2O====4HF+O2】(O2不标气体符号)碳还原二氧化硅【2C+SiO2==高温==Si+2CO↑】碳和水蒸气反应【C+H2O==高温==CO+H2】(不标气体符号)氢气还原四氯化硅【2H2+SiCl4==高温==Si+4HCl】(HCl不标气体符号)氯气置换溴【Cl2+

分析近红外光谱仪中近红外光谱原理

  近红外光谱仪主要是依靠近红外光谱原理来进来一系列的测量,而近红外光谱又是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,记录的主要是含氢基团X-H(X=C、N、O)振动的倍频和合频吸收。不同团(如甲基、亚甲基,苯环等)或同一基团在不同化学环境中的近红外吸收波长与强度都有明显差别,NI

分析近红外光谱仪中近红外光谱原理

近红外光谱仪主要是依靠近红外光谱原理来进来一系列的测量,而近红外光谱又是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,记录的主要是含氢基团X-H(X=C、N、O)振动的倍频和合频吸收。不同团(如甲基、亚甲基,苯环等)或同一基团在不同化学环境中的近红外吸收波长与强度都有明显差别,NIR

光谱仪用于定性分析的几种方法

 光谱仪器的定性分析是指:由于各种元素的原子结构不同,在光源的作用下都可以产生自己特征的光谱。如果一个样品经过激发摄谱在感光板上有几种元素的谱线出现,就证明该样品中有这几种元素。这样的分析方法就叫做光谱定性分析方法。 光谱仪器用于定性分析方法有以下几种: 1.比较光谱分析法:这种方法应用比较广泛,它

非金属的简介

通常条件下为气体或没有金属特性的脆性固体或液体,如元素周期表右上部15种元素和氢元素,零族元素的单质。非金属元素是元素的一大类,在所有的一百多种化学元素中,非金属占了23种。在周期表中,除氢以外,其它非金属元素都排在表的右侧和上侧,属于p区。包括氢、硼、碳、氮、氧、氟、硅、磷、硫、氯、砷、硒、溴、碲

什么是非金属?

非金属在通常条件下为气体或没有金属特性的脆性固体或液体,如元素周期表右上部15个元素和氢元素,零族元素的单质。大部分非金属原子具有较多的价层s、p电子,可以形成双原子分子气体或骨架状,链状或层状大分子的晶体结构。

非金属的特性

非金属在室温下可以是气体或固体(除了溴,惟一一个液体非金属元素)。非金属元素在固体时并没有闪亮的表面,但是不同的元素会有不同的颜色,例如碳是黑色的,而硫是黄色的。非金属的硬度有明显的差别,例如硫是很软的,但钻石(碳的一种)却是全世界最硬的。非金属是易碎的,而且密度比金属要低。非金属不是好的导热体,是

拉曼光谱与红外光谱比较

拉曼光谱与红外光谱比较 拉曼光谱红外光谱光谱范围40-4000Cm-1光谱范围400-4000Cm-1水可作为溶剂水不能作为溶剂样品可盛于玻璃瓶,毛细管等容器中直接测定不能用玻璃容器测定固体样品可直接测定需要研磨制成KBR压片

新型非金属掺杂碳材料!加速催化CO2转化

  使用廉价高效的催化剂对CO2进行资源能源化转化是实现人工光合成所面临的一项非常重要的挑战。从成本和材料的可修饰性考虑,非金属碳材料具有极强优势。但是,水系电解液中,碳材料表面的析氢(HER)与CO2还原竞争非常激烈。目前主要的解决方案是通过掺杂氮和硼原子抑制其HER活性,提高其催化CO2还原活性

什么是红外光谱

红外光谱原理概述红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的

什么是红外光谱

红外光谱原理概述红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的