超快太赫兹扫描隧道显微镜(THzSTM)
导读 原子级上电流的超快控制对纳米电子未来的创新至关重要。之前相关研究表明,将皮秒级太赫兹脉冲耦合到金属纳米结构可以实现纳米尺度上极度局部的瞬态电场。 正文 近期,加拿大阿尔伯塔大学(University of Alberta)Frank A. Hegmann教授研究组在美国RHK Technology公司生产的商用超高真空扫描隧道显微镜(RHK-UHV-SPM 3000)系统上自主研发了太赫兹-扫描隧道显微镜(THz-STM),首次在超高真空中对Si(111)-(7×7)样品表面执行原子分辨率THz-STM测量,展示了超高真空中的THz-STM探索原子精度的超快非平衡隧道动力学的超强能力。 图1:利用THz-STM在超高真空中控制极端隧道电流 在图1(a)中可以看到,超快太赫兹(THz)脉冲通过反向视窗上的透镜(左侧)聚焦到超高真空(中间)的STM探针上,在隧道结......阅读全文
太赫兹超构传感器研究获进展
近日,四川大学材料科学与工程学院教授黄婉霞团队,展示了一种基于Mie谐振的柔性超构传感器阵列,于太赫兹超构传感器研究上取得进展。相关成果在《自然—通讯》发表。具有高空间分辨率的大面积柔性应变传感器阵列在可穿戴设备,物联网等领域具有很好的应用前景。但大面积、高传感密度的阵列集成往往伴随着制造难度大、布
什么是太赫兹?太赫兹有哪些优点和应用?
太赫兹(Tera Hertz,THz)是波动频率单位之一,又称为太赫,或太拉赫兹。等于1,000,000,000,000Hz,通常用于表示电磁波频率。太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇可能引
西安光机所太赫兹消色差超透镜研究取得进展
近日,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室在太赫兹频段可变焦消色差超透镜领域取得新进展。相关研究成果发表在Journal of Science: Advanced Materials and Devices上。超透镜是一种二维平面透镜结构,具有体积小、重量轻、易于集成等特
西安光机所太赫兹超材料功能器件研究获进展
导读: 陈徐研究了一种利用石墨烯构建的三维太赫兹超材料结构,通过与太赫兹波的相互作用,可以实现多个等离子体共振模式激发。 3月19日,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室研究员范文慧课题组,在太赫
超材料为太赫兹技术发展打开大门
太赫兹电磁波在非侵入性的成像与传感技术、信息技术、通信技术以及存储技术领域有着广阔的应用前景,虽然人们已经认识到太赫兹电磁波的重要性,但由于自然界材料的限制,制备高效的太赫兹发射源非常困难。 通过宽带太赫兹源,可以为研究基础物理学提供更多激动人心的方法,并可用于非侵入性材料成像与感知技术,以及太赫
太赫兹片上可编码超构调控芯片进展
在国家自然科学基金项目(批准号:61931006、61921002、U20A20212)等资助下,电子科技大学张雅鑫教授团队与中国电子科技集团公司第十三研究所专用集成电路国家级重点实验室冯志红研究员团队合作在太赫兹片上可编码超构调控芯片研究方面取得进展。最新研究成果以“基于多通道微扰场的可编码数
太赫兹的应用
用标准激光照射到一种独特的非线性材料上,该材料将可见光转化为THz电磁波,THz波朝向物体,再利用一种“高光谱”相机拍摄,所得到的每一个像素即有影像,还包含该物体的电磁特征,能够“看到”物体的分子组成,能够区分糖和可卡因等不同的物质化学成分,同时可捕捉物体内部的高清图像。 特点: 1.可穿透
太赫兹技术突破
2016年10月28日消息,中国航天科工集团23所已获得中国首幅太赫兹波段外场SAR图像,太赫兹波段雷达成像关键技术取得突破性成果。通过首幅太赫兹波段外场SAR图像,主要技术指标和成像算法得到了试验验证,为太赫兹雷达工程应用奠定了技术基础。不过,由于高功率太赫兹辐射源发展水平的限制,太赫兹雷达系统成
什么是太赫兹
太赫兹是一种能量的最小粒子,它比纳米还要微小,被称为第三大医学,它可以更容易的进入细胞,每秒产生上亿次的震动,可与细胞磁场能量波形成共振,修复受损细胞,补充细胞能量,提高生命力!太赫兹是微观世界中电子运动所产生的磁能和超微粒子所产生的非连续能量波动的本源态,是能量波动的最小单位。
太赫兹主要应用
THz主要应用领域:太赫兹的独特性能给通信(宽带通信)、雷达、电子对抗、电磁武器、天文学、医学成像(无标记的基因检查、细胞水平的成像)、无损检测、安全检查(生化物的检查)等领域带来了深远的影响。由于太赫兹的频率很高,所以其空间分辨率也很高;又由于它的脉冲很短(皮秒量级)所以具有很高的时间分辨率。太赫
无源太赫兹太赫兹技术发展新高峰
2016年2月27日,国家创新与发展战略研究会在上海虹桥示范馆举办了“当代科技创新成果展”。举办展会的宗旨是服务“中国制造2025战略”,为世界级的创新科技企业提供展示平台。此次成果展,对参展资格要求十分严苛:其技术或产品处于世界领先水平;其技术或产品对中国产业具有升级效果;可能对未来世界做出贡献的
太赫兹双层超材料中的相干完美吸收机制
近日,微太中心太赫兹物理团队及其合作者在《应用物理快报》(Applied Physics Letters)上发表题为《超薄双层超材料在反对称模式激发下的选择性相干完美吸收(”Selective coherentperfect absorption of subradiant mode in
太赫兹技术应用简介
太赫兹波(THz波)是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm范围,介于微波与红外之间。一百多年前,在红外天文学上人们曾提到太赫兹,但在科研和民用方面很少有人触及。在微波、可见光、红外等技术被广泛应用的情况下,太赫兹发展滞后的主要原因在于缺少探测器和发射源,直到近十几
太赫兹简介及特点
THz波(太赫兹波)或成为THz射线(太赫兹射线)是从上个世纪80年代中后期,才被正式命名的,在此以前科学家们将统称为远红外射线。太赫兹波是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm范围,介于微波与红外之间。实际上,早在一百年前,就有科学工作者涉及过这一波段。在1896
太赫兹相机东方闪光
新浪微博QQ空间复制链接适合低频太赫兹波段成像,是对一个特定波段的电磁辐射统称,通常它指频率再0.1THz-10THz(波长在30μm-3mm)之间的电磁波。典型应用:安检与监控、危险品检查、质量及流程监控、光谱、亚毫米天文学、视频监测等。太赫兹对金属、塑料、陶瓷、液体呈现出不同的反射特性,可用于识
太赫兹波的应用
太赫兹(THz)波是介于微波和红外之间的一种相干电磁辐射,是人类目前尚未完全开发的电磁波谱“空隙区”。由于其频率范围处于电子学和光子学的交叉区域,太赫兹波的理论研究处在经典理论和量子跃迁理论的过渡区,其性质表现出一系列不同于其他电磁辐射的特殊性,从而具有许多方面不同的应用。主要应用在光谱、成像和通信
太赫兹技术应用简介
太赫兹波(THz波)是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm范围,介于微波与红外之间。一百多年前,在红外天文学上人们曾提到太赫兹,但在科研和民用方面很少有人触及。在微波、可见光、红外等技术被广泛应用的情况下,太赫兹发展滞后的主要原因在于缺少探测器和发射源,直到近
太赫兹雷达技术(二)
2.1.2 真空电子学太赫兹雷达太赫兹电真空器件以其高功率输出优势在太赫兹雷达系统发展中具有重要意义。最早关于真空电子学太赫兹雷达的报道是1988年马萨诸塞大学的McIntosh R E等人基于当时真空器件扩展互作用振荡器(Extended Interaction Oscillator, EIO
太赫兹雷达技术(一)
摘要:太赫兹雷达具有带宽大、分辨率高、多普勒敏感、抗干扰等独特优势,是目标探测领域的重要发展方向。该文首先回顾和介绍了电子学和光学太赫兹雷达系统历史、现状和最新进展,其次对太赫兹雷达目标特性从机理、计算、测量3个方面进行了梳理和概要介绍,同时阐述了太赫兹ISAR、SAR、阵列和孔径编码成像研究状况,
太赫兹雷达技术(四)
太赫兹由于波长短对相对转角要求较小,还可以进行方位-俯仰成像获得横剖面类光学图像,用于目标散射中心诊断与分析。美国STL实验室基于远红外激光器和QCL分别实现了1.5 THz和2.4 THz方位俯仰成像[44,73]。国防科技大学针对目标成像结果中散射点数目急剧增加和目标散射分布呈现出的块结构分布特
太赫兹特点和应用
THz波(太赫兹波)或成为THz射线(太赫兹射线)是从上个世纪80年代中后期,才被正式命名的,在此以前科学家们将统称为远红外射线。太赫兹波是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm范围,介于微波与红外之间。实际上,早在一百年前,就有科学工作者涉及过这一波段。在1896
太赫兹雷达技术(五)
5.2 安检反恐应用近年来,国际国内反恐维稳形式呈现出袭击领域多、危害程度大、影响范围广的复杂态势,在公共安全场所对人员进行安检是预防公共安全事件最有效手段之一。目前以美国L3系统为代表的毫米波成像仪成熟度高且已部署应用,但机械扫描时需要人体静止驻留耗时略长,且阵元数目多、成本较高。太赫兹雷达具有分
太赫兹雷达技术(三)
3.2 目标散射特性建模与计算目标散射特性建模与计算是获取目标散射特性的有效方法。太赫兹频段实际目标一般应视为粗糙表面目标,表面细微结构散射较强不可忽略,且是超电大尺寸目标,这是太赫兹频段目标散射特性建模与计算的瓶颈问题。研究太赫兹频段目标特性可采用两种技术途径:一种是由微波/毫米波向上扩展,另一种
太赫兹技术应用简介
太赫兹波(THz波)是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm范围,介于微波与红外之间。一百多年前,在红外天文学上人们曾提到太赫兹,但在科研和民用方面很少有人触及。在微波、可见光、红外等技术被广泛应用的情况下,太赫兹发展滞后的主要原因在于缺少探测器和发射源,直到近十几
超快光场调控拍赫兹光电流研究获进展
近日,中国科学院上海光学精密机械研究所研究团队,在利用超快光场调控二维材料器件中的拍赫兹(PHz)光电流方面取得理论突破,揭示了多体相互作用在驱动拍赫兹光电流产生过程中的关键性影响。随着摩尔定律逐渐失效,传统半导体技术正逼近其物理极限。在此背景下,“光波电子学”应运而生。该领域利用超强超快激光的振荡
伊朗科学家用石墨烯超表面进行太赫兹超快信号处理
我们知道,在时域中直接进行超快信号处理,并且要保障高分辨率和高可重构性,是一项具有挑战性的任务。 最近,伊朗德黑兰沙力夫理工大学电子工程系的Zahra Kavehvash小组首次设计出了一种随着时间变化的超表面(time varying metasurface),可以用于太赫兹域的超快信号处理
石墨烯和太赫兹“撞”出“火花”-开启太赫兹立体成像的大门
冯志红,研究员,博士生导师,博士毕业于香港科技大学电机与电子工程系,中国电子科技集团公司首席专家,中国电科十三所副总工程师,专用集成电路国家级重点实验室常务副主任,国际电工委员会(IEC)专家。发表SCI/EI论文共计100余篇。研究方向涉及太赫兹固态电子器件和其他先进半导体材料和器件。2017年,
比5G快10倍的太赫兹技术或将2020年问世
谈到红外光、激光和微波等技术,相信大多数人都有所了解。不过,知道太赫兹技术的人却寥寥无几了。早在2004年,美国首次提出太赫兹(THz,1012Hz)技术,并且被列为“改变未来世界的十大技术”之一。中国科学院院士姚建铨表示,“太赫兹技术,在光学领域有一个近年来为大众所熟知的名
verTera-连续波太赫兹扩展
verTera 连续波太赫兹扩展独特的verTera升级扩展版本的问世,使VERTEX 80v成为世界上第一台将傅立叶变换红外光谱与连续波太赫兹联用的的光谱仪。除了具有VERTEX 80v变换红外的性能和灵活性,verTera升级扩展版本还可以实现个位数的波数范围、或例如最高光谱分辨率这样的顶级技术
太赫兹对人体的作用
太赫兹技术在生物医学方面的应用,生物大分子相互作用是重大生命现象与病变产生的关键动因,而太赫兹光子能量覆盖了生物大分子空间构象的能级范围。该频段包含了其他电磁波段无法探测到的直接代表生物大分子功能的空间构象等重要信息。 因此,可以发展一种利用太赫玆探测和干预生物大分子相互作用过程的新理论和新技