Mie氏散射理论的实验研究
众所周知,Mie氏散射理论主要用于从亚微米至微米的尺寸段,在微米以下至纳米的光散射则近似为形式更明晰简单的瑞利散射定律,而对大于微米至毫米的大粒子则近似为意义明确的夫琅和费衍射规律。用这些定律可成功解释各类散射现象,并指导颗粒的粒度分布的测试技术,Mie氏散射理论是对处于均匀介质中的各向均匀同性的单个介质球在单色平行光照射下的Maxwell方程边界条件的严格数学解,它是目前颗粒测试中的主流理论。 下面我们在分析国内外颗粒散射理论和测试技术基础上设计了一套采用光子技术测量亚微米量级颗粒散射信息的实验系统来对Mie氏散射理论进行更加深入的研究。为了将亚微米乃至纳米范围内的颗粒更加精确地测量其粒径大小,实验中采用光子技术,合理地设计样品池与入射光之间的角度,很好地提高了实验精度,得到与Mie 理论吻合较好的结果,并创新提出采用光纤探头结合光电倍增管与光子计数器作探测器的粒......阅读全文
一文了解|激光粒度分析原理及测试原理
激光粒度分析仪是通过颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小的仪器,采用Furanhofer衍射及Mie散射理论,测试过程不受温度变化、介质黏度,试样密度及表面状态等诸多因素的影响,只要将待测样品均匀地展现于激光束中,即可获得准确的测试结果。 激光衍射技术开始于小角散射,因此这一技
逆合成孔径雷达成像(二)——雷达基本原理1
电磁散射 散射是当电磁波碰到不连续/非均匀性或物体时发生的物理现象。波动轨迹或路径的偏差通常称为散射。根据散射物体相对于电磁波波长的大小,可以对散射现象进行分类。雷达信号以不同的方式反射或散射,这取决于电磁波的波长和物体的形状(散射体)。如果电磁波的波长比散射体的大小小得多,电磁波就会反射回来
激光粒度仪是粒度测试的好搭档
激光粒度分析仪是一款人性化的激光粒度仪,丹东百特仪器的激光粒度仪又一次飞跃性的突破。它采用Mie氏散射原理、会聚光傅立叶变换光路技术及无约束自由拟合数据处理技术的同时更赋予了自动化、化等一些时代性的标志,使操作更简便、方法更统一、结果更稳定,是粒度测试的好搭档和得力助手。 激光粒度分析仪是根据光
如何挑选准确度和重复性好的激光粒度仪
激光粒度仪采用Furanhofer衍射及Mie散射理论,测试过程不受温度变化、介质黏度,试样密度及表面状态等诸多因素的影响,只要将待测样品均匀地展现于激光束中,即可获得准确的测试结果。而且区别于沉降法,由于不需要沉降过程,因此在一次测试中可以多次采样(5-20次任意设定),有效的滤除了由于电噪声,
激光粒度仪应用导论之原理篇
如今激光粒度的应用越来越广泛,技术和市场屡有更迭,潮起潮落,物换星移,该如何全方位掌握激光粒度仪的技术和应用发展,如何更好地让激光粒度仪成为我们科研、检测工作中的好战友呢?仪器信息网有幸邀请在中国颗粒学会前理事长,真理光学首席科学家,从事激光粒度仪的研究和开发工作近30年的张福根博士亲自执笔开设专栏
激光粒度仪原理和技术趋势浅析
在科学研究和工农业生产中的固体原料和制品, 很多都是以粉体形态存在的,颗粒粒度分布对这些产品的质量和性能起着重要的作用。例如,催化剂的粒度对催化效果有着重要的影响;水泥的粒度影响凝结时间及最终的强度;各种矿物填料的粒度影响着制品的质量与性能;涂料的粒度会影响涂饰效果和表面光泽;药物的粒度影
麦奇克新型Millitrac颗粒图像分析仪简介
技术参数:测量范围:90 - 13,200µm测量技术:单色CCD图像分析技术重复性:误差≤1.5%,分析精度:30通道扫描速度:60循环/10秒测量时间:1-9,999秒,用户可选直接干粉进样分析,样品可回收实时图像处理,操作直观方便报告形式:体积/数量粒度分布,等效圆形面积直径,椭圆长短径比,椭
浅谈激光粒度仪功能特点以及在现实生活中应用领域
谈到粒度,大家都会立马想到当今社会的激光粒度分析仪,在各行各业的粒度检测领域,激光粒度仪应用相当广泛。从传统的石油化工、建材家居,到制药、食品、环保,甚至在新兴的锂电、半导体、石墨烯等行业,都能看到激光粒度仪活跃的身影。激光粒度仪提高生产企业产品品质,也改变了人们的生活水平。 激光粒度分
浅谈激光粒度仪功能特点以及在现实生活中应用领域
谈到粒度,大家都会立马想到当今社会的激光粒度分析仪,在各行各业的粒度检测领域,激光粒度仪应用相当广泛。从传统的石油化工、建材家居,到制药、食品、环保,甚至在新兴的锂电、半导体、石墨烯等行业,都能看到激光粒度仪活跃的身影。激光粒度仪提高生产企业产品品质,也改变了人们的生活水平。 激光粒度分
浅谈激光粒度仪功能特点以及在现实生活中应用领域
谈到粒度,大家都会立马想到当今社会的激光粒度分析仪,在各行各业的粒度检测领域,激光粒度仪应用相当广泛。从传统的石油化工、建材家居,到制药、食品、环保,甚至在新兴的锂电、半导体、石墨烯等行业,都能看到激光粒度仪活跃的身影。激光粒度仪提高生产企业产品品质,也改变了人们的生活水平。激光粒度分析方法是
激光粒度仪的概论及分类
概论 [1]激光粒度仪一般是由激光器、透镜、光电接收器阵列、信号转换与传输系统、样品分散系统、数据处理系统等组成。激光器发出的激光束,经滤波、扩束、准直后变成一束平行光,在该平行光束没有照射到颗粒的情况下,光束经过透镜后将其汇聚到焦点上。当通过某种特定的方式把颗粒均匀地放置到平行光束路径中时,
激光粒度仪的分类-及原理
主要分类 纳米激光粒度仪 采用动态光散射原理技术和光子相关光谱技术,因颗粒在悬浮液中做布朗运动,使得光强随时间产生脉动,领用数字相关器技术处理脉冲信号,得到颗粒运动的扩散信息,利用Stokes-Einstein方程计算得出颗粒粒径大小及分布。 喷雾激光粒度仪 采用Mie氏散射原理和典型的
激光粒度仪基础知识
1、为什麽散射/衍射激光粒度仪必须采用激光作光源激光粒度仪是通过检测颗粒的散射谱来分析颗粒大小与分布的,因此能否获得清晰的散射谱至关重要,激光是一种准直性,单色性良好的光源,只有采用激光才能在散射/衍射粒度仪器中得到清晰的散射谱分布。用多种波长混合的光源不可能获得清晰的散射谱,只能获得多种散射谱的
激光粒度测试时样品折射率和吸收率的确定方法(一)
使用激光粒度仪进行粒度测试,是目前应用广泛的一种粒度测试方法。早期的激光粒度仪用弗朗和费理论,这种理论不需要样品折射率,但对小于5微米的样品误差较大。为了使激光粒度仪测量细样品的精度更高,当今大部分粒度仪都采用Mie散射理论,这是一种描述颗粒对激光散射规律的理论,但Mie散射理论进行计算时需要用到样
基于DSP和ARM的激光粒度仪关键电路设计
激光粒度仪是一种最先进的、最具有广泛发展前景的粒度测量仪器,它的测量原理基于米氏(Mie)散射理论。Mie散射理论是一个经典的光散射理论,它最大的特点是可用于任何尺寸段颗粒的测量,但它的计算相当复杂限制了数据处理速度及精度。 DSP技术实现MIE散射算法有很多优点:它是专为算法计算而设计的专
基于DSP和ARM的激光粒度仪关键电路设计
激光粒度仪是一种最先进的、最具有广泛发展前景的粒度测量仪器,它的测量原理基于米氏(Mie)散射理论。Mie散射理论是一个经典的光散射理论,它最大的特点是可用于任何尺寸段颗粒的测量,但它的计算相当复杂限制了数据处理速度及精度。DSP技术实现MIE散射算法有很多优点:它是专为算法计算而设计的专用CPU,
激光粒度仪的概述
[1]激光粒度仪一般是由激光器、透镜、光电接收器阵列、信号转换与传输系统、样品分散系统、数据处理系统等组成。激光器发出的激光束,经滤波、扩束、准直后变成一束平行光,在该平行光束没有照射到颗粒的情况下,光束经过透镜后将其汇聚到焦点上。当通过某种特定的方式把颗粒均匀地放置到平行光束路径中时,激光束经
关于激光粒度仪的概述
激光粒度仪一般是由激光器、透镜、光电接收器阵列、信号转换与传输系统、样品分散系统、数据处理系统等组成。激光器发出的激光束,经滤波、扩束、准直后变成一束平行光,在该平行光束没有照射到颗粒的情况下,光束经过透镜后将其汇聚到焦点上。当通过某种特定的方式把颗粒均匀地放置到平行光束路径中时,激光束经过颗粒
激光粒度仪如何获得颗粒的散射光能谱分布
所谓激光粒度仪是专指通过颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小的仪器。根据激光散射原理,颗粒大小不同,散射光能量随散射角度的分布也不同,此种分布称为散射谱。激光粒度仪就是通过检测颗粒群的散射谱反演颗粒大小及其分布的。1、为什麽散射/衍射激光粒度仪必须采用激光作光源激光粒度仪是通过检测颗
中外比拼,在线粒度仪谁能更胜一筹?
在科学研究和工农业生产中的固体原料和制品,很多都是以粉体形态存在的,颗粒粒度分布对这些产品的质量和性能起着重要的作用。例如,催化剂的粒度对催化效果有着重要的影响;水泥的粒度影响凝结时间及最终的强度;各种矿物填料的粒度影响着制品的质量与性能;涂料的粒度会影响涂饰效果和表面光泽;药物的粒度影响口感、吸收
激光粒度仪是测什么的?
激光粒度仪是通过颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小的仪器,采用Furanhofer衍射及Mie散射理论,测试过程不受温度变化、介质黏度,试样密度及表面状态等诸多因素的影响,只要将待测样品均匀地展现于激光束中,即可获得准确的测试结果。 激光法的粒度测试原理: 激光粒度仪是根据
粒度仪原理中米氏散射和夫琅禾费衍射
激光粒度仪的理论中经常提到米氏理论和夫琅禾费衍射理论,那么这两者的区别都有哪些? 米氏散射理论经麦克斯韦电磁理论严格推导,是描述表面光滑的均匀球体对光的散射理论,考虑了散射体(颗粒)的光学特性(折射率和吸收系数)。 弗朗和夫衍射理论由原始的光的波动理论推导,是麦克斯韦理论在小角度下的近
激光粒度仪技术不断发展-应用前景日渐广阔
激光粒度仪是通过颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小的仪器,采用Furanhofer衍射及Mie散射理论,测试过程不受温度变化、介质黏度,试样密度及表面状态等诸多因素的影响,自动化程度较高、操作方便、测量结果准确、可靠、重复性好,受到了广大用户的青睐,市场前景一片大好。 目前,基
激光粒度仪特点
激光粒度仪是通过颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小的仪器,采用Furanhofer衍射及Mie散射理论,测试过程不受温度变化、介质黏度,试样密度及表面状态等诸多因素的影响,只要将待测样品均匀地展现于激光束中,即可获得准确的测试结果。 激光粒度仪应用领域 建材、化
激光粒度仪的性能原理及应用范围
激光粒度仪是通过颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小的仪器,采用Furanhofer衍射及Mie散射理论,测试过程不受温度变化、介质黏度,试样密度及表面状态等诸多因素的影响,只要将待测样品均匀地展现于激光束中,即可获得准确的测试结果。激光粒度仪广泛应用于建材、化工、冶金、能源、食品
当代激光颗粒分析技术的进展与应用
著名物理学家费曼曾说: 假如由于某种大灾难,所有的科学知识都丢失了,只有一句话传给下一代,那么怎样才能用最少的词汇来表达最多的信息呢? 我相信这句话是原子的假设,所有的物体都是用原子构成的。”可见物质组成在人类文明中具有多么重要的意义。 20世纪,人们对于宏观与微观的物理世界已经有了相
激光粒度测试仪的测量原理是什么
激光粒度仪是通过颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小的仪器,采用Furanhofer衍射及Mie散射理论,测试过程不受温度变化、介质黏度,试样密度及表面状态等诸多因素的影响,只要将待测样品均匀地展现于激光束中,即可获得准确的测试结果。 原理 激光粒度仪作为一种新型的粒度测试仪
激光粒度测试仪的测量原理是什么
激光粒度仪是通过颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小的仪器,采用Furanhofer衍射及Mie散射理论,测试过程不受温度变化、介质黏度,试样密度及表面状态等诸多因素的影响,只要将待测样品均匀地展现于激光束中,即可获得准确的测试结果。 原理 激光粒
浅析影响激光粒度仪测量结果的5大因素
激光粒度仪是通过颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小的仪器,采用Furanhofer衍射及Mie散射理论,测试过程不受温度变化、介质黏度,试样密度及表面状态等诸多因素的影响,只要将待测样品均匀地展现于激光束中,即可获得准确的测试结果。 在激光粒度仪的使用过程中,有5大因素会
激光粒度仪特点
激光粒度仪是通过颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小的仪器,采用Furanhofer衍射及Mie散射理论,测试过程不受温度变化、介质黏度,试样密度及表面状态等诸多因素的影响,只要将待测样品均匀地展现于激光束中,即可获得准确的测试结果。 激光粒度仪应用领域 建材、化工、冶金、能源、