科学家希望造对撞机研究光撞上光会发生什么

还记得《哈利波特与火焰杯》里哈利和伏地魔的对决吗?他们各自掏出魔杖,同步念出咒语,接着,魔杖射出的光对撞,曾死于伏地魔魔杖下的灵魂们一一闪现。 虽然这只是魔幻世界里的想象,但在现实世界里,科学家也很好奇当两束光子对撞后会发生什么。 在近日举行的香山科学会议第631次学术讨论会上,科学家提出了在中国建造世界上第一台伽马光子对撞机的想法。伽马光子能撞出啥 光,虽然看起来普通,却一直是物理界研究的重点。科学家从未打消过对光的好奇,一些在物理学界知名的理论还预言了光子的性质。 例如,量子电动力学预言了实光子之间的相互作用。如果能够让实光子对撞,并精确测量它们的相互作用,将是对量子电动力学的一次新角度的检验。 “低能、中级能段、高能的伽马光子对撞可以带来不同的新物理现象。”中科院高能物理所研究员张昊说。 低能区伽马光子对撞后,科学家通过观察和测量从能量到物质的转化,可以直接验证爱因斯坦著名的质能方程E=mc2......阅读全文

欧洲大型强子对撞机升级改造

  据《每日电讯报》、英国广播公司在线版4月2日报道,欧洲核子研究中心的工程师开始对大型强子对撞机(LHC)进行升级改造,使其增加一倍的功率,以允许科学家进一步揭示宇宙中神秘的“暗物质”。   这次将投入7000万英镑,对去年帮助科学家发现希格斯玻色子的粒子加速器进行改造,改造后可以目前的能量粉碎

大型强子对撞机状况好过预期

  欧洲核子研究中心主任罗尔夫·霍伊尔26日说,大型强子对撞机的运行状况好过预期,有望在未来实现重大发现。   霍伊尔是在第35届国际高能物理会议的一个新闻发布会上作出这番表示的。会议于22日至28日在巴黎召开,其主要议题是大型强子对撞机几个月来的研究成果以及未来的前景。霍伊尔说,大

国际大型线性对撞机或被迫“瘦身”

  《自然》杂志官网日前报道称,鉴于资金有限和未发现新粒子,国际未来加速器委员会近日批准,削减原计划在日本建造的国际线性对撞机(ILC)的规模——能量从500千兆电子伏特(GeV)减半到250GeV,隧道的长度由33.5公里减至13公里。  ILC被认为是大型强子对撞机(LHC)的补充,LHC是环形

欧洲大型强子对撞机开工在即

   据欧洲核子研究委员会(CERN)粒子物理实验室官方称,全球最大的核子加速器——大型强子对撞机(LHC)的修复工作已顺利完成。  经过为期两年的检修后,当工程师在3月21日准备重启LHC——在2012年曾发现希格斯玻色子的27公里长的对撞机时,却检测到设备短路。故障明显是由其

中青报:中国该不该建巨型对撞机

  2015年4月的一天,我在中国科学院高能物理所访谈了高能物理所前任副所长张闯研究员。当时,中国版巨型对撞机还只是一个在物理学家小圈子里流传的概念,老百姓对这个事情几乎一无所知。  张闯研究员告诉我,这个项目能不能做,关键要考虑这个项目的造价是多少。从科学家的角度来说,他觉得这个项目是值得做的;但

对撞机,究竟是个什么机

在由科幻小说《三体》改编的同名电视剧中,对撞机可以说是最重要的道具了——正是因为“三体人”利用它们的高科技产物“智子”影响了地球上对撞机的实验,使得物理实验结果变得无规律可循,才让一部分科学家的信念崩塌,走上了自绝之路。那么,作为真实存在的科研设备,对撞机究竟是什么?它又对人类有哪些作用呢?1.对撞

粒子对撞机内首次探测到中微子

  据美国加州大学欧文分校官网20日报道称,该校物理学家主导的“前向搜索实验”(FASER)首次探测到粒子对撞机产生的中微子,此前该团队曾观察到6个中微子之间的相互作用,此次新发现有望加深科学家对中微子的理解,还有助揭示行进较长距离与地球发生碰撞的宇宙中微子,为管窥遥远宇宙打开一扇窗。  中微子无处

粒子对撞机内首次探测到中微子

据美国加州大学欧文分校官网20日报道称,该校物理学家主导的“前向搜索实验”(FASER)首次探测到粒子对撞机产生的中微子,此前该团队曾观察到6个中微子之间的相互作用,此次新发现有望加深科学家对中微子的理解,还有助揭示行进较长距离与地球发生碰撞的宇宙中微子,为管窥遥远宇宙打开一扇窗。 中微子无处不

三维光学拓扑绝缘体研制成功-有望建成光子的“高速公路”

  日前,浙江大学信息与电子工程学院教授陈红胜课题组成功研制出首个三维光学拓扑绝缘体,将三维拓扑绝缘体从费米子体系扩展到了玻色子体系,有望大幅度提高光子在波导中的传输效率。研究成果今日于《自然》杂志正式发表。  这项研究由浙江大学陈红胜教授课题组和新加坡南洋理工大学教授Baile Zhang、Yid

LaVision双光子显微镜多线扫描双光子成像(一)

Journal of Neuroscience Methods 151 (2006) 276–286Application of multiline two-photon microscopy to functional in vivo imagingRafael Kurtz a,∗, Matthi

LaVision双光子显微镜多线扫描双光子成像(三)

2.2.多线TPLSM中通过成像检测释放光    在单光束TPLSM中,光电倍增管PMT或者雪崩二极管APD可以很方便地用于释放光检测,由于双光子激发的原理,激发只发生在激光焦点处。因此,用于屏蔽离焦光线的共焦小孔变得不必要,并且可以使用NDD检测。这意味着激发光不会被送回扫描镜,而是直接进入位于靠

LaVision双光子显微镜多线扫描双光子成像(二)

2. 方法与结果    为了从激光扫描显微镜的功能性成像中得出重要结论,一个高的时间分辨率是很重要的。在低光情况下,这通常通过进行单线扫描来获取。这被以一个垂直系统(VS)神经元的突触前分支的激光共聚焦(Leica SP2)钙离子成像示例 (see Fig. 1, Table 1). 这类神

LaVision双光子显微镜多线扫描双光子成像(四)

2.3. 多线TPLSM中的获取模式    我们以两种获取模式操作多线TPLSM:第一种,整个研究使用所谓“帧扫描”模式,以64束激光在X、Y方向扫描样品。因此焦平面上激发了均一性照明,假定光束阵列的横向步长尺寸没有过于粗糙(通常使用≤400 nm的步长尺寸)。在Fig. 3A,展示了以“帧

为什么原子可以吸收光子?电子跟光子有什么关系?

原子吸收光子,实际上是原子中的电子在吸收光子。   凡是带有电荷的微粒,都既能产生光子、又能吸收光子。光子是电荷之间相互联系的信使。万物总是相互联系的(试想:若无联系,万物何以存在?),光子就是电荷之间相互联系的方式。   电子一般不会单独转化为光子,这不符合电荷守恒定律。只有一对正负电

双光子显微镜的双光子显微镜的优势

双光子荧光显微镜有很多优点:1)长波长的光比短波长的光受散射影响较小容易穿透标本;2)焦平面外的荧光分子不被激发使较多的激发光可以到达焦平面,使激发光可以穿透更深的标本;3)长波长的近红外光比短波长的光对细胞毒性小;4)使用双光子显微镜观察标本的时候,只有在焦平面上才有光漂白和光毒性。所以,双光子显

显微镜里,单光子、双光子显微镜的区别

这个以前解释过,单光子就是通常的荧光激发方式,一个光子激发一个荧光分子发光,荧光波长比激发波长稍微长一些;双光子就是用两个光子激发一个荧光分子,激发光子能量小于荧光光子能量,因此激发波长长于荧光波长。现在公认的双光子激发的用途:1. 用于用到红外激发,穿透深度要高于单光子激发,2. 用于需要更高的激

欧洲大型强子对撞机重启工作提速

欧洲核子研究中心12月12日发布新闻公报说,目前全球最大、能量最高的粒子加速器——欧洲大型强子对撞机重启工作正在提速,对撞机第二阶段对撞实验将于2015年5月开启。 公报说,大型强子对撞机总长27公里的超导磁铁已几乎冷却至零下271.25摄氏度的正常运行温度,占八分之一部分的超导

欧洲大型强子对撞机即将再次启动

大型强子对撞机的磁体受损迫使其在2008年首次关闭   北京时间2月24日消息,据美国《国家地理》网站报道,欧洲大型强子对撞机(LHC)项目主管表示,这台对撞机最早将于2月25日重新投入使用,即便只能以原来一半的功率运行,它仍有可能发现素有“上帝粒子”之称的希格斯玻色子的存在证据。   大型

大型强子对撞机实验产生全新物质

一个质子与铅的原子核发生撞击,Alice探测器中产生一个粒子群。在大型强子对撞机中进行的实验产生了一种全新的物质。  北京时间11月29日消息,据国外媒体报道,美国麻省理工学院科学家近日通过大型强子对撞机实验取得了一项重大研究成果,一种全新的物质在他们的实验中产生,该研究成果对于现代

哈佛物理博士曝美国对撞机下马经过

  近两天,杨振宁和中科院高能物理所所长王贻芳分别发文,争论中国是否应该修建大对撞机。这场争论的一个导火索,就是评论家、哈佛大学物理系博士王孟源“看衰”大对撞机的文章。9月5日,王孟源在博客上回应王贻芳,称美国大对撞机1990年代的下马内幕是一开始压低了预算,预算严重超支是美国超导超级对撞机(SSC

目前光子技术的现状

从理论上来说,硅基器件完全没可能在性能上比过III-V。硅光的优势在于cmos厂不用换生产线,所以注定是一个退而求其次的技术。但话说回来,几大fab真的投钱建几条III-V线又有何不可呢。看看avago这几年的崛起和intel的失利。

光子牵引效应的定义

光子牵引效应是指在经典电磁波频率范围(即光子能量hν

光子牵引效应的概念

光子牵引效应是指在经典电磁波频率范围(即光子能量hν

光子特性相关概述

  从波的角度看,光子具有两种可能的偏振态和三个正交的波矢分量,决定了它的波长和传播方向;从粒子的角度看,光子静止质量为零,电荷为零,半衰期无限长。光子是自旋为1的规范玻色子,因而轻子数、重子数和奇异数都为零。  光子的静止质量严格为零,本质上和库仑定律严格的距离平方反比关系等价,如果光子静止质量不

光子如雪也能崩塌

  寂静的雪山,随着一声“咔嚓”的轻响,雪层断裂,“白色妖魔”呼啸而下,巨大的力量能将将所过之处扫荡殆尽,自然界的雪崩危害巨大,能摧毁森林、威胁人类。实际上,雪崩并非雪花专有,光子也能发生雪崩,同样的能量喷涌,带来的却是革命性的应用。 近日,研究人员开发出了第一个证明“光子雪崩”的纳米材料,这可

LSCM的双光子技术

近年来LSCM推出了双光子技术,即利用两个低能量激发光子激发一个荧光分子,其荧光波长等于一个高能量单光子直接激发一个荧光分子,却降低荧光损耗,并具有更高的激发功率和稳定的穿透力,从而提高图片分辨率,值得进行尝试和应用。总之,LSCM技术因其简单易行的前期处理、高辨识度的后期成像及无损于样品等优势,将

什么叫光子计数技术

光子计数技术,是检测极微弱光的有力手段,这一技术是通过分辨单个光子在检测器(光电倍增管)中激发出来的光电子脉冲,把光信号从热噪声中以数字化的方式提取出来。这种系统具有良好的长时间稳定性和很高的探测灵敏度。目前,光子技术系统广泛应用于科技领域中的极微弱光学现象的研究和某些工业部分中的分析测量工作,如在

光子的特性详细叙述

  光子能够在很多自然过程中产生,例如:在分子、原子或原子核从高能级向低能级跃迁时电荷被加速的过程中会辐射光子,粒子和反粒子湮灭时也会产生光子;在上述的时间反演过程中光子能够被吸收,即分子、原子或原子核从低能级向高能级跃迁,粒子和反粒子对的产生。  在真空中光子的速度为光速,能量E和动量p之间关系为

纳米光子学与生物光子学联合研究中心在长春成立

  国际纳米光子学与生物光子学联合研究中心日前在长春成立。这是长春理工大学与美国纽约州立大学在光学领域共同搭建的一个合作平台。   纳米制造技术是21世纪的关键技术之一,生命科学是当今世界科技发展的热点之一。随着激光技术、光谱技术、显微技术以及光纤技术的飞速发展,由光学、纳米、生物领域融合而成的新

多光子显微镜成像技术:双光子显微镜角膜成像

角膜提供了眼睛的大部分折射能力,由5层组成(图1),从外到内依次是上皮层,鲍曼层、基质、角膜后弹力层(间质膜)、内皮层。 wx_article_20200815180121_819doe.jpg 图1 角膜的组织学结构 上皮层负责阻挡异物落入角膜,厚约50μm,由三