Antpedia LOGO WIKI资讯

抗生素的高级组合用药:效果远超预期

抗生素的联合用药由来已久,但是传统上认为,三种或更多抗生素联合对药效的增益不明显,甚至药物之间的相互作用会导致它们丧失基本的疗效。但是最近,生物学家们研究了1万多种新抗生素的组合,发现有些4-5种抗生素的联用能有效对抗耐药细菌。 加州大学洛杉矶分校的生物学家团队研究了抗生素的一系列高级组合用药,结果发现,在四种药物的组合中,有1,676个组合表现优于预期,在五种药物的组合中,则有6,443个组合比预期更有效。这一发现,可能会颠覆人们对多种抗生素组合用药的认知。该成果发表于9月3日的《nature partner journals: Systems Biology and Applications》杂志上。该文章的通讯作者,加州大学洛杉矶分校生态与进化生物学教授Van M. Savage说:“当我们增加联合用药的数量时,我对实验的结果感到非常震惊。人们认为他们已经知道了各种组合中的抗生......阅读全文

PNAS:利用CRISPR/Cas9开发出一种精准的基因组突变预防系统

  通用的DNA遗传编码中的单个碱基变化可导致或恶化许多危及生命的疾病。这种“点突变”能够将人体内的细胞转变为癌细胞,随后这种癌细胞继续生长而形成肿瘤,或者它们能够将将抗生素敏感性细菌转化为导致不可治愈的感染的抗生素耐药性细菌。在理想的世界中,临床医生应能够在携带着这样的有害点突变的细胞产生后立即将

PNAS:利用CRISPR/Cas9开发出一种精准的基因组突变预防系统

  通用的DNA遗传编码中的单个碱基变化可导致或恶化许多危及生命的疾病。这种“点突变”能够将人体内的细胞转变为癌细胞,随后这种癌细胞继续生长而形成肿瘤,或者它们能够将将抗生素敏感性细菌转化为导致不可治愈的感染的抗生素耐药性细菌。在理想的世界中,临床医生应能够在携带着这样的有害点突变的细胞产生后立即将

美再次发现感染可耐强抗生素的“超级细菌”患者

  美国研究人员11日说,美国发现第二例携带含基因MCR-1的“超级细菌”病例。这个基因会使细菌对被称为抗生素中“最后一道防线”的多粘菌素产生耐药性。  美国JMI实验室的研究人员在新一期美国《抗微生物制剂与化学疗法》期刊上报告说,在源于纽约一名患者的大肠杆菌中发现了MCR-1基因。不过,患者的详细

新研究揭开细菌能“吃”青霉素的秘密

  青霉素等抗生素常被用于对付细菌,但现在一些细菌不仅对抗生素产生了耐药性,甚至还能以抗生素为食。一项最新研究揭开了细菌为何能“吃”青霉素的秘密,相关发现有助于解决抗生素污染问题。图片来源于网络  美国圣路易斯华盛顿大学医学院等机构的研究人员近日在英国《自然·化学生物学》杂志上发表的论文说,他们分析

新研究揭开细菌能“吃”青霉素的秘密

  新华社华盛顿5月7日电 青霉素等抗生素常被用于对付细菌,但现在一些细菌不仅对抗生素产生了耐药性,甚至还能以抗生素为食。一项最新研究揭开了细菌为何能“吃”青霉素的秘密,相关发现有助于解决抗生素污染问题。   美国圣路易斯华盛顿大学医学院等机构的研究人员近日在英国《自然·化学生物学》杂志上发表的论

新研究揭开细菌能“吃”青霉素的秘密

  青霉素等抗生素常被用于对付细菌,但现在一些细菌不仅对抗生素产生了耐药性,甚至还能以抗生素为食。一项最新研究揭开了细菌为何能“吃”青霉素的秘密,相关发现有助于解决抗生素污染问题。   超级细菌.jpg   美国圣路易斯华盛顿大学医学院等机构的研究人员近日在英国《自然·化学生物学》杂志上发表的论

美再次发现感染可耐强抗生素的“超级细菌”患者

美国研究人员11日说,美国发现第二例携带含基因MCR-1的“超级细菌”病例。这个基因会使细菌对被称为抗生素中“最后一道防线”的多粘菌素产生耐药性。 美国JMI实验室的研究人员在新一期美国《抗微生物制剂与化学疗法》期刊上报告说,在源于纽约一名患者的大肠杆菌中发现了MCR-1基因。不

分子生物学常用实验技术(page 1)

第一章质粒DNA 的分离、纯化和鉴定 第二章DNA 酶切及凝胶电泳 第三章大肠杆菌感受态细胞的制备和转化 第四章RNA 的提取和cDNA 合成 第五章重组质粒的连接、转化及筛选 第六章基因组DNA 的提取 第七章RFLP 和RAPD 技术 第八章聚合酶链式反应(PCR)扩增和扩增产物克隆 第九章分

Nat Chem Biol:利用细菌的特殊 来彻底清理环境中的抗生素.

  对于严重细菌性感染(肺炎和脑膜炎)的患者而言,抗生素似乎是救命稻草,这种药物对于细菌是致命性的,但有些细菌能够通过衍生出一些耐药机制来对抗这些抗生素的作用;如今科学家们并不清楚细菌如何安全地使用抗生素,近日,一项刊登在国际杂志Nature Chemical Biology上的研究报告中,来自华盛

太空环境下细菌或变异扩散:成为致命超级病毒

  目前,科学家最新一项研究可能对于未来太空旅行者是一则坏消息。美国休斯顿大学博士后研究员马德罕·蒂鲁马莱(Madhan Tirumalai)发现,在类似太空的条件下细菌将变异和扩散,做为迄今最严谨的一项研究工作,他观察到大肠杆菌在一个模拟微重力的旋转容器内迅速繁殖 1000 多代。  蒂鲁马莱发现

DNA重组(DNA recombination)技术:外源基因的蛋白表达-2

2.包涵体的分离与纯化细胞破碎时提取细胞内产物的关键。对于细菌的裂解常用的有酶溶法、超声破碎法、化学渗透法、玻璃珠研磨等。包涵体可通过超声波、匀浆等常规的方法是菌体破碎后,离心就可得到。密度梯度离心后可得到高纯度的包涵体。包涵体一般不溶于水,为了获得可溶性的蛋白质可加入强蛋白质变性剂后使其溶解。一般

专家指出,德国耐药大肠杆菌为抗生素滥用问题敲响警钟

  三位科学家5日在中国科协举办的“科学家与媒体面对面”活动中提出,近期在德国暴发的志贺毒素大肠杆菌警示我们,细菌耐药性问题空前严峻,要高度重视抗生素滥用问题。   军事医学科学院微生物流行病研究所研究员杨瑞馥说,通过基因组解析发现,这次德国产志贺毒素大肠杆菌带有大量的抗性基因

科学家揭示超级细菌产生耐药基因原因

  [提要] 自然界(非临床环境)中本来就存在大量的“天然耐药基因”,而人类对抗生素的滥用如同“筛选压力”,选择并进化这些整合有“耐药基因”的病菌,使得后者最终成为人类的噩梦――临床上的“耐药菌”。   自然界(非临床环境)中本来就存在大量的“天然耐药基因”,而人类对抗生素的滥用如同“筛选压力

抗菌产品靠谱吗?三氯生实际上给细菌发了免死金牌

  如今,超市的货架上摆放了各种各样的抗菌产品。人们也乐于接受抗菌或抑菌的概念。然而,美国华盛顿大学圣路易斯分校的一项新研究发现,一种本该杀死细菌的化合物让细菌变得更强壮,更容易在抗生素治疗中存活。  如今,超市的货架上摆放了各种各样的抗菌产品。人们也乐于接受抗菌或抑菌的概念。然而,美国华盛顿大学圣

陈君石:谁是食品安全的头号大敌

  近日,国家食品安全风险评估中心研究员,中国工程院院士陈君石在博客上发表了《谁是食品安全的头号大敌》一文,就食源性疾病的重要性进行了全面而深入的诠释。他在文中指出,相比于国人最关注的添加剂、防腐剂,食品中毒才是对食品安全的最大威胁。本刊转载此文,相信您读后一定会有收获。  保障食品安全,

用λ噬菌体 PL 启动子在大肠杆菌中表达克隆基因实验

            实验材料 载体和细菌菌株 PL 表达载体 阳性对照质粒 试剂、试剂盒

用λ噬菌体 PL 启动子在大肠杆菌中表达克隆基因实验

实验材料 载体和细菌菌株PL 表达载体阳性对照质粒试剂、试剂盒 考马斯亮蓝染色溶液或银染溶液L-色氨酸SDS 凝胶加样缓冲液SDS-聚丙烯酰胺凝胶靶基因或 cDNA 片段LB 琼脂平板LB 培养基M9 基本培养基仪器、耗材 SorvallGSA 转头或相当的转头沸水浴振荡培养器实验步骤 材料缓冲液和

《环球科学》2011年十大科学新闻评选

  “十大科学新闻”评选是《环球科学》(《科学美国人》杂志中文版)每年一度的重头戏,也是本年度全球各大科学领域的重大事件进行的一次全面盘点。经过专业编辑和专家团队的商讨,《环球科学》初步挑选出了30条候选新闻,接受网友的点评和投票。  1、超光速粒子挑战爱因斯坦相对论  9月23日,欧洲核子研究中心

用λ噬菌体 PL 启动子在大肠杆菌中表达克隆基因实验

λ噬菌体 PL 启动子是受控于温度敏感阻抑物(cIts857) 的强效启动子,阻抑物可在低温下阻抑 PL 启动子的转录,但在髙温下不能。因此带有λ噬菌体启动子的载体必须以带有 cIts857 基因的菌株作为宿主。本实验来源于分子克隆实验指南(第三版)下册,作者:〔美〕J. 萨姆布

Nature:科学家发明“分子诱饵”,不用抗生素也能除掉细菌

  抗生素耐药性问题是当今全球卫生面临的最大威胁之一。老牌抗生素耐药率不断升高,而近30年来又没有新的抗生素被发现或合成。这意味着,我们最终可能没有抗生素能对抗不断出现的耐药菌。因此,除了抗生素,科学家们也在努力寻找其他的抗菌方法。近日,华盛顿大学医学院的一项研究发现,一种分子诱饵可以靶向作用于肠道

大肠杆菌素或能杀死大肠杆菌本身

  近日,英国诺丁汉大学生物分子科学中心研究人员表示,他们发现了对付大肠杆菌菌株的新线索。研究人员指明了如何使“细菌素”——能够杀死其他细菌菌株的物质——进入细菌细胞进而杀死它,以及如何让大肠杆菌产生的大肠杆菌素A有针对性地到另一个细胞蛋白(TolA)中创建一个新的“特洛伊木马”武器,并最终从内部杀

克隆化的PCR产物连入T载体

实验方法原理 由 Taq DNA 聚合酶 PCR 扩增产生的带 3' 突出端为 A 碱基的 DNA 片段能高效地克隆至 T 载体上,这种 T 载体有与 A 碱基互补的未配对 3' T 碱基(Holton and Graham 1991; Marchuk et al. 1991

克隆化的PCR产物连入T载体

            实验方法原理 由 Taq DNA 聚合酶 PCR 扩增产生的带 3' 突出端为 A 碱基的 DNA 片段能高效地克隆至 T 载体上,这种 T 载体有与 A 碱基互补的未配

克隆化的PCR产物连入T载体

由 Taq DNA 聚合酶 PCR 扩增产生的带 3' 突出端为 A 碱基的 DNA 片段能高效地克隆至 T 载体上,这种 T 载体有与 A 碱基互补的未配对 3' T 碱基(Holton and Graham 1991; Marchuk et al. 1991)。本实验来源「分子克

多肽抗生素研究进展(三)

3.2 基因工程合成法 利用基因工程的方法生产多肽抗生素是降低生产成本的一条有效途径。但是多肽抗生素对原核细胞的毒性在一定程度上限制了其在原核表达系统中的应用。而真核表达系统的较低表达效率也是其工业化生产的一个障碍。为了克服多肽抗生素对细菌细胞的毒性,人们采用融合表达或选择对多肽抗生素具有抗性的株系

PCR产物的平末端克隆

常规采用的技术路线,实验一般利用噬菌体 T4 DNA 聚合酶等补平扩增 DNA 片段的末端(Weiner 1993; Chuang et al. 1995)。Liu 与 Schwartz (1992) 发现在连接反应的温育过程中,当反应液中存在过量的限制性内切核酸酶能显著地增加重组质粒的产率

PCR产物的平末端克隆

            实验方法原理 靶基因经 PCR 扩增,样品进行必要的纯化回收后,接下来用平末端进行连接克隆也是分子生物学实验中常规采用的技术路线,实验一般利用噬菌体 T4 DNA 聚合酶等补平扩

通过PCR扩增在扩增DNA产物末端引入限制性核酸内切酶酶...

通过PCR扩增在扩增DNA产物末端引入限制性核酸内切酶酶切位点实验方法原理 实验材料 噬菌体 T4 DNA 连接酶限制性内切核酸酶靶 DNA试剂、试剂盒 氯仿EDTA乙醇酚氯仿乙酸钠TE仪器、耗材 琼脂糖凝胶水浴箱实验步骤 一、材料1. 缓冲液与溶液氯仿EDTA ( 0

PCR产物的平末端克隆

靶基因经 PCR 扩增,样品进行必要的纯化回收后,接下来用平末端进行连接克隆也是分子生物学实验中常规采用的技术路线,实验一般利用噬菌体 T4 DNA 聚合酶等补平扩增 DNA 片段的末端(Weiner 1993; Chuang et al. 1995)。本实验来源「分子克隆实验指南第三版」黄培堂等译

PCR扩增在扩增DNA产物末端引入限制性核酸内切酶酶切位点

实验方法原理实验材料噬菌体 T4 DNA 连接酶限制性内切核酸酶靶 DNA试剂、试剂盒氯仿EDTA乙醇酚氯仿乙酸钠TE仪器、耗材琼脂糖凝胶水浴箱实验步骤一、材料1. 缓冲液与溶液氯仿EDTA ( 0.5 mol/L, pH 8.0)乙醇酚:氯仿(1:1,V/V)乙酸钠(3 mol/L, pH 5.2