新疆理化所获得氟磷酸盐非线性光学材料

探索功能基团是进行功能导向性材料研发的关键所在。中国科学院新疆理化技术研究所新型光电功能材料研发团队一直致力于非线性光学材料设计制备。为缩短材料制备的研发周期,研发团队建立了材料软件研发、材料基因筛选及预测、材料设计、第一性原理计算和结构预测到设计制备的材料集成研究方案。 近期,针对紫外/深紫外非线性光学材料发展瓶颈,新疆理化所新型光电功能材料研发团队通过探索非线性光学材料有效功能基团进行结构设计组装,在紫外/深紫外非线性光学材料设计方面取得了成效。2017年,该课题组提出了在硼酸盐中引入[BOxF4-x](x = 1,2,3) 功能基团的设计策略。理论计算和实验表明,[BOxF4-x]基团的引入可以“剪切”B-O网络,构建有利于产生大双折射的结构,同时产生大的倍频效应和短的紫外截止边,相关成果以Very Important Paper (VIP) 形式在国际期刊《德国应用化学》(Angew. Chem. Int. Ed.......阅读全文

福建物构所中远红外非线性光学材料设计与合成获系列进展

  中远红外(2–20 μm)二阶非线性光学(NLO)材料在光电对抗、资源探测、空间反导、通讯等方面有重要的应用。目前,商用中远红外二阶NLO材料为AgGaS2和ZnGeP2,但这两个材料又都存在一些致命的弱点,例如损伤阈值低、双光子吸收等。因此,探索新型中远红外NLO材料是当前NLO材料研究的

福建物构所中远红外非线性光学材料复合功能化研究获进展

  中远红外二阶非线性光学(NLO)材料在光电对抗、资源探测、空间反导、通讯等方面有重要的应用。因此,探索新型中远红外NLO材料是当前NLO材料研究的难点和热点之一。而红外NLO的复合功能化是一个少有开拓的新领域。   中科院福建物质结构研究所陈玲课题组在中远红外二阶NLO材料设计与合成研究方面取

福建物构所深紫外非线性光学晶体材料研究获进展

  深紫外激光具有波长短、光子能量高等优点,因而在高分辨率成像、光谱应用、微细加工等诸多领域具有重要的应用价值,利用深紫外非线性光学晶体进行变频是获得深紫外激光的主要手段。优良的深紫外非线性光学晶体既要具有大的非线性光学效应,又要具有短的紫外吸收边,而这两种性能在某种程度上是相互冲突的,这就需要在两

福建物构所深紫外非线性光学晶体材料研究获进展

  深紫外激光具有波长短、光子能量高等优点,因而在高分辨率成像、光谱应用、微细加工等诸多领域具有重要的应用价值,利用深紫外非线性光学晶体进行变频是获得深紫外激光的主要手段。优良的深紫外非线性光学晶体既要具有大的非线性光学效应,又要具有短的紫外吸收边,而这两种性能在某种程度上是相互冲突的,这就需要在两

新疆理化所氟化硼磷酸盐深紫外非线性光学晶体获进展

波长短于200 nm的深紫外激光具有能量分辨率高、光谱分辨率高、光子通量密度大等特点,在激光光刻、激光微加工、先进科学仪器等方面颇具应用价值。作为全固态激光器输出深紫外激光的关键材料,深紫外非线性光学晶体新材料的制备探索一直是前沿课题。   中国科学院新疆理化技术研究所晶体材料研究中心致力于新型深紫

新疆理化所磷酸盐深紫外非线性光学晶体材料研究获进展

  非线性光学晶体是一种重要的光电信息功能材料,在信息、科研、能源、工业制造和医疗卫生等领域具有广泛的应用前景。随着激光精密机械加工业、激光化学、紫外激光光谱学和激光医学等学科的飞速发展,人们迫切需要发展全固态深紫外相干光源,其关键突破点在于深紫外波段(光谱范围在200nm以下)的非线性光学晶体的研

福建物构所中远红外非线性光学材料结构设计取得突破

    福建物构所中远红外非线性光学材料结构设计取得突破  探索新型中远红外非线性光学材料是非线性光学研究中的一个重要的前沿和热点方向。传统的中远红外非线性光学材料主要是金属磷属化合物、金属硫属化合物、金属卤化物等,而且非线性光学材料以提高复杂阴离子基团的非线性极化率为主要结构设计思

福建物构所磷酸盐深紫外非线性光学晶体材料研究获进展

  深紫外激光由于其波长短、能量高,在微观探测、微区记录等领域都有极其重要的用途。深紫外激光的产生主要依赖于频率转换器件材料即深紫外非线性光学晶体的变频能力。目前,中国是当今世界上唯一掌握深紫外全固态激光技术的国家,深紫外非线性光学晶体研究主要围绕硼酸盐体系开展,而得到实际应用的深紫外非线性光学晶体

二异丙酯氟磷酸盐标记检测参考值

粒细胞总数的测定:     标记粒细胞半衰期(T1/2):4~10小时;血中滞留时间:10~14小时。     全血粒细胞池(TBGP):35~70×107/kg     循环粒细胞池(CGP):20~30×107/kg     边缘粒细胞池(MGP):15~40×107/kg     粒细胞周转率

新疆理化所短波长非线性光学晶体的设计与合成取得进展

  非线性光学晶体材料是重要的光电信息功能材料,在信息、能源、工业制造、医学、科研等领域具有广泛的应用前景。随着激光精密机械加工业、激光化学、紫外激光光谱学和激光医学等学科的飞速发展,人们迫切需要发展全固态深紫外相干光源,其关键突破点在于紫外和深紫外波段的非线性光学晶体的研制和应用。多年来设计、合成

理化所发表第一性原理探索新型非线性光学晶体综述文章

  非线性光学晶体是当今及未来光电信息技术的重要基础材料,其发展与激光技术的发展密切相关。上世纪八九十年代,中国科学院院士陈创天提出的阴离子基团理论极大地促进了BBO、LBO和KBBF非线性光学晶体的发展,并成功地满足了紫外、可见波段的激光技术需求。从本世纪初开始,随着深紫外和中红外应用波段激光技术

正磷酸盐、聚磷酸盐、总磷酸盐的吸附去除

   污水中的磷通常以正磷酸盐、聚磷酸盐、ci磷酸盐以及有机磷等形式存在。含磷废水的处理方法有化学法、生物法、吸附法、结晶法等。 目前,在我国大多数污水处理厂使用化学除磷法和生物除磷法,下面做个简单的介绍。   1 化学法   化学除磷法是向污水中投加化学药剂,生成难溶性盐,形成絮凝体后与水分

哈工大在环境光催化技术研究领域取得新成果

  日前,哈尔滨工业大学城市水资源与水环境国家重点实验室任南琪院士团队成员尤世界教授和博士研究生刘国帅的研究成果“非线性光学材料光催化高效脱氮”在环境科学与工程领域国际著名期刊《环境科学与技术》(Environmental Science & Technology)上发表。  哈工大研究人员首次揭示

福建物构所磷属红外非线性光学晶体研究获进展

  红外非线性光学晶体能够通过频率转换作用,产生中红外可调谐激光。目前,红外非线性光学晶体的应用主要有硫镓银、硒镓银和磷锗锌,但是由于其存在的缺陷,已不能满足运用需要。因此,急需探索性能更优异的中红外非线性光学材料。磷属化合物非线性光学材料通常展现出较大倍频系数及较高热导率,因此,磷属化合物是合适的

无机聚合物结构双氟磷腈深紫外非线性光学性能理论研究

  深紫外非线性光学材料在全固态激光技术的实际应用中扮演着十分重要的角色。但是由于严苛的性能指标,深紫外非线性光学材料十分罕见。KBe2BO3F2(KBBF)晶体是迄今为止唯一实用的深紫外非线性光学晶体材料,在诸多高新技术(例如角分辨能谱仪)中具有非常重要的应用价值。按照阴离子基团理论,深紫外非线性

新疆理化所四元碱金属红外非线性光学晶体研究获进展

  中远红外激光(2-20 μm)在国防、通讯、医疗以及安全方面有着重要的应用,其中红外非线性光学晶体是实现中远红外激光输出的关键器件。目前商业化的红外非线性光学晶体存在多方面的性能缺陷,限制了它们的应用范围。因此,设计和探索新型的红外非线性材料成为红外激光领域发展的重要方向。  中国科学院新疆理化

新疆理化所锌硼酸铯紫外非线性晶体材料研究取得进展

  紫外非线性光学晶体材料是重要的光电信息功能材料,在信息、能源、工业制造、医学、科研等领域具有广泛的应用前景。多年来设计、合成性能优异的新型紫外非线性光学晶体材料一直是新型功能材料领域的研究热点。   铍硼酸盐被广泛看作紫外/深紫外非线性光学材料的理想选择,近年来,许多性能优异的铍硼酸盐非线性光

新疆理化所合成含硅氧氟混合配位基元无机硅磷酸盐晶体

  由于含氟化合物独特的物理化学性能,使得其在现代化学和材料中扮演着越来越重要的角色。氧氟混合配位基元如BO3F,BO2F2,COF3,PO3F,SO3F等都已在对应的硼酸盐、碳酸盐、磷酸盐、硫酸盐等晶体结构中被发现,但硅酸盐是个例外。硅酸盐结构多样、种类繁多,具有岛状的橄榄石、层状的石英、环状的蒙

红外非线性光学晶体材料研究获进展

  红外非线性光学晶体作为激光频率转换的关键器件,在全固态激光器中具有重要的应用。当前商用红外非线性光学晶体主要包括黄铜矿型化合物,如AgGaS2, AgGaSe2和ZnGeP2。然而,由于各自本征的性能缺陷,这些材料已不能完全满足当前长波红外激光技术发展的需求,亟需突破现有材料性能的限制,发展高性

新型光学材料打破数据转换的障碍

  特拉维夫大学的研究人员通过研究光与物质的相互作用,开发出了新型光学材料,此非线性超材料有望用于未来通信芯片的制造,将开启打破数据转换的障碍的大门。  从计算机,平板电脑和智能手机到汽车,家庭和公共交通,我们的世界一天天的变得更加数字连接化,而支持大量数据交换所必需的技术就显得至关重要。

福建物构所金属有机π团簇理论研究取得进展

非线性光学材料在原子冷却、量子信息存储、光子飞轮和光开关方面的应用展现了广阔前景。团簇是化学领域中重要的结构单元,但是现有的团簇理论大多侧重于对几何构型的解释,对其性能特征的描述相对较少,探索团簇结构特征与性能之间的关系具有重要意义。芳香性作为化学基本概念,对于揭示分子体系的几何结构、稳定性、电子离

福建物构所金属有机π团簇理论研究取得进展

  非线性光学材料在原子冷却、量子信息存储、光子飞轮和光开关方面的应用展现了广阔前景。团簇是化学领域中重要的结构单元,但是现有的团簇理论大多侧重于对几何构型的解释,对其性能特征的描述相对较少,探索团簇结构特征与性能之间的关系具有重要意义。芳香性作为化学基本概念,对于揭示分子体系的几何结构、稳定性、电

科学家提出评估晶体材料光学各向异性模型

  光学各向异性是材料的一个本征属性,它的强弱决定着光电功能材料的应用。在探索新材料的过程中,研究微观结构对材料性能的贡献及对外场的响应对探索新材料有指导意义并且可以缩短新材料的研发周期。因此,探索出对材料性能起决定性的“基因”,对材料发展这个“基因工程”具有非凡意义。日前,中科院新疆理化所潘世烈团

废水磷酸盐和饮用水磷酸盐怎么计算

5.1 水样中总磷酸盐含量X(毫克/升),按下式计算:X = A/Vw*1000式中:A——从标准曲线查得的总磷酸盐的含量,毫克;Vw——水样体积,毫升。5.2 水样中正磷酸盐含量X(毫克/升),按下式计算:X = A/Vw*1000式中:A——从标准曲线查得的正磷酸盐的含量,毫克;Vw——水样体积

我国首次合成MB2O3F2-克服了SBBO结构的不稳定性问题

  激光光源的波长拓展很大程度上依赖于频率转换器件材料—非线性光学晶体的变频能力。随着激光在紫外和深紫外波段应用的日益重要,如何设计合成性能更优的非线性光学材料是当前研究的重点和热点。    图1 从SBBO到MBOF的结构演化。             图2 在PBOF和SBOF带隙附近的的电子电

磷酸盐的测定

磷钼蓝光度法方法提要在强酸性溶液中,磷酸盐与钼酸铵作用生成磷钼杂多酸,能被还原剂(氯化亚锡)还原,生成蓝色的配合物。当磷酸盐的含量较低时,其颜色与磷酸盐的含量呈正比。本法测定10mg/L以下的磷酸盐(HPO2-4)。仪器分光光度计。试剂钼酸铵-硫酸溶液(25g/L)向约70mL纯水中缓缓加入28mL

磷酸盐的测定

磷钼蓝光度法方法提要在强酸性溶液中,磷酸盐与钼酸铵作用生成磷钼杂多酸,能被还原剂(氯化亚锡)还原,生成蓝色的配合物。当磷酸盐的含量较低时,其颜色与磷酸盐的含量呈正比。本法测定10mg/L以下的磷酸盐(HPO2-4)。仪器分光光度计。试剂钼酸铵-硫酸溶液(25g/L)向约70mL纯水中缓缓加入28mL

磷酸盐的测定

磷钼蓝光度法方法提要在强酸性溶液中,磷酸盐与钼酸铵作用生成磷钼杂多酸,能被还原剂(氯化亚锡)还原,生成蓝色的配合物。当磷酸盐的含量较低时,其颜色与磷酸盐的含量呈正比。本法测定10mg/L以下的磷酸盐(HPO2-4)。仪器分光光度计。试剂钼酸铵-硫酸溶液(25g/L)向约70mL纯水中缓缓加入28mL

磷酸盐的测定

磷钼蓝光度法方法提要在强酸性溶液中,磷酸盐与钼酸铵作用生成磷钼杂多酸,能被还原剂(氯化亚锡)还原,生成蓝色的配合物。当磷酸盐的含量较低时,其颜色与磷酸盐的含量呈正比。本法测定10mg/L以下的磷酸盐(HPO2-4)。仪器分光光度计。试剂钼酸铵-硫酸溶液(25g/L)向约70mL纯水中缓缓加入28mL

我国学者成功制备硫酸碘酸氧铌非线性光学晶体

  非线性光学材料在全固态激光器、医疗、通讯、精密制造、核聚变等领域具有不可替代的作用,通过合理设计合成新型高性能非线性光学材料是该领域的研究热点和难点。引入易产生二阶姜泰勒效应的结构单元,可有效获得非中心对称结构化合物,这一策略广泛用于合成新型的非线性光学材料。这些结构单元包括d0族过渡金属离子(