2018北京光谱年会(第一轮通知)

北京理化分析测试技术学会光谱分会定于2019年1月8日在北京天文馆举办“2018年北京光谱年会”。会议拟就光谱分析技术及应用、化学计量学在光谱分析中的应用等问题开展学术交流,并邀请相关领域专家做专题报告。 一、地点:北京天文馆4D剧场(北京动物园斜对面) 二、时间:2019年1月8日(09:30-15:10) 注: 1. 会议给参会代表提供免费午餐,会议结束后请参会代表观看4D电影。 2. 会议费用由北京理化分析测试技术学会光谱分会承担,因报告厅座位有限,请参会代表务必于2018年12月30日前提交“参会回执”,否则不能保证您入场参会,敬请谅解! 会 务 组:北京理化分析测试技术学会 通讯地址:北京海淀区西三环北路27号 北科大厦 (100089) 联 系 人:朱凌云 电 话:010-68722460 手 机:13717666003 邮 箱:spnh88@126.com 北京理化分析测试技术学会北京光......阅读全文

定量光谱分析的相关介绍

  20世纪初,逐步实现了定量光谱分析。1890年,胡特和德利菲德的研究成果表明,照相底片的黑度与产生映像的曝光量的对数在一定范围内成直线关系,这就是后来的乳剂特性曲线。这一发现为“摄谱法光谱定量分析”准备了条件。德国人格拉赫在1924年经施伐策尔改进了该方法:如果在几年试样中,基体元素的量是恒定的

实验分析技术光谱分析导论

光谱分析属于光学分析(optical analysis)。光学分析法是依据物质的电磁辐射或电磁的倍射与物质相互作用后发生的变化来测定物质的性质、含量和结构的一类分析方法,广义上为光学法,分为光谱分析法和非光谱分析法两大类。光谱分析法是基于物质内能状态改变而发生电磁辐射的发射或吸收与物质组成及其构之间

光谱分析的特点和分类

根据物质的光谱来鉴别物质及确定它的化学组成和相对含量的方法叫光谱分析.其优点是灵敏,迅速.历史上曾通过光谱分析发现了许多新元素,如铷,铯,氦等.根据分析原理光谱分析可分为发射光谱分析与吸收光谱分析二种;根据被测成分的形态可分为原子光谱分析与分子光谱分析。光谱分析的被测成分是原子的称为原子光谱,被测成

分子荧光光谱分析作用

作用编辑对于稀溶液( 吸光度A=εcl≤0.05 )而言,其荧光强度F=2.3jI0εcl。式中j是荧光物质的荧光效率;I0为入射光强度;ε为荧光物质的摩尔吸光系数,c为荧光物质的浓度 ,l为样品池的厚度。该式表明,在稀溶液(A≤0.05)和I0及l不变的条件下,荧光强度与该物质的浓度成正比

光谱分析——荧光分析法

荧光分析法:利用荧光强度进行分析的方法,称为荧光法。在荧光分析中,待测物质分子成为激发态时所吸收的光称为激发光,处于激发态的分子回到基态时所产生的荧光称为发射光。医学教|育网搜集整理荧光分析法测定的是受光激发后所发射的荧光强弱

光谱分析仪的特点

光谱分析仪,是一种用于测量发光体的辐射光谱,即发光体本身的指标参数的仪器。光谱分析仪的特点有:1、采样方式灵活,对于稀有和贵重金属的检测和分析可以节约取样带来的损耗;2、测试速率高,可设定多通道瞬间多点采集,并通过计算器实时输出;3、对于一些机械零件可以做到无损检测,而不破坏样品,便于进行无损检测;

X-射线荧光光谱分析

本文评述了我国在2005年至2006年X射线荧光光谱,包括粒子激发的X射线光谱的发展和应用,内容包括仪器研制、激发源、探测器、软件、仪器改造、仪器维护和维修、样品制备技术、分析方法研究和应用。 更多还原

光谱分析的基本形式

①线状光谱。由狭窄谱线组成的光谱。单原子气体或金属蒸气所发的光波均有线状光谱,故线状光谱又称原子光谱。当原子能量从较高能级向较低能级跃迁时,就辐射出波长单一的光波。严格说来这种波长单一的单色光是不存在的,由于能级本身有一定宽度和多普勒效应等原因,原子所辐射的光谱线总会有一定宽度(见谱线增宽);即在较

X荧光光谱分析特点

由于X射线荧光的能量比较大,样品被激发后,产生的特征X射线极易被吸收,而从样品中发射出来的荧光很少,也即是荧光产额很少。因此采用X荧光光谱仪测量微量元素,不是特长,因此不要把精力过分地放在低含量元素分析上。同理,对于轻元素,如硼、碳、氮、氧等,也不要指望有多好的检出限;但对于高含量的轻元素分析,却有

光谱分析法的历史

  1858~1859年间,德国化学家本生和物理学家基尔霍夫奠定了一种新的化学分析方法—光谱分析法的基础。他们两人被公认为光谱分析法的创始人。

概述光谱分析方法的特点

  (1)分析速度较快  原子发射光谱用于炼钢炉前的分析,可在l~2分钟内,同时给出二十多种元素的分析结果。  (2)操作简便  有些样品不经任何化学处理,即可直接进行光谱分析,采用计算机技术,有时只需按一下键盘即可自动进行分析、数据处理和打印出分析结果。在毒剂报警、大气污染检测等方面,采用分子光谱

X射线荧光光谱分析

X射线荧光的激发源使用X射线而不使用电子束,因为使用X射线避免了样品过热的问题。几乎所有的商品X射线荧光光谱仪均采用封闭的X射线管作为初始激发光源。某些较简单的系统可能使用放射性同位素源,而电子激发一般不单独使用在X射线荧光光谱仪中,它仅限于在电子显微镜中X射线荧光分析中使用。X射线荧光谱仪具有快速

光谱分析法的应用

  光谱分析法开创了化学和分析化学的新纪元,不少化学元素通过光谱分析发现。已广泛地用于地质、冶金、石油、化工、农业、医药、生物化学、环境保护等许多方面。光谱分析法是常用的灵敏、快速、准确的近代仪器分析方法之一。

光谱分析(2)基本理论

  光谱分析(2)基本理论  昨天讲述了光谱分析的基本概念。今天讲述光谱分析的分类。  光谱法——基于物质与辐射能作用时,分子发生能级跃迁而产生的发射、吸收或散射的波长或强度进行分析的方法。  可分为原子光谱、分子光谱、非光谱法  原子光谱(线性光谱):主要是由于核外电子能级发生变化而产生的辐射或吸

光谱分析法的原理

  物质吸收波长范围在200~760nm区间的电磁辐射能而产生的分子吸收光谱称为该物质的紫外——可见吸收光谱,利用紫外——可见吸收光谱进行物质的定性、定量分析的方法称为紫外——可见分光光度法。其光谱是由于分子之中价电子的跃进而产生的,因此这种吸收光谱决定于分子中价电子的分布和结合情况。其在饲料加工分

拉曼光谱的光谱分析

实验做出的谱图(见附图,以波长为单位)标准的谱图(如下,以波数为单位)通过的结构分析解释光谱:分子为四面体结构,一个碳原子在中心,四个氯原子在四面体的四个顶点。当四面体绕其自身的一轴旋转一定角度,或记性反演(r—-r)、或旋转加反演之后,分子的几何构形不变的操作称为对称操作,其旋转轴成为对称轴。CC

光谱分析法的分类

分子能级之间跃迁形成的发射光谱和吸收光谱。分子光谱非常丰富,可分为纯转动光谱、振动 - 转动光谱带和电子光谱带。分子的纯转动光谱由分子转动能级之间的跃迁产生,分布在远红外波段,通常主要观测吸收光谱;振动 - 转动光谱带由不同振动能级上的各转动能级之间跃迁产生,是一些密集的谱线,分布在近红外波段,通常

红外光谱分析的用途

红外光谱分析可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。红外光谱具有高度特征性,可以采用与标准化合物的红外光谱对比的方法来做分析鉴定。已有几种汇集成册的标准红外光谱集出版,可将这些图谱贮存在计算机中,用以对比和检索,进行分析鉴定。利用化学键的特征波数来鉴别化合物的类型,并可用于

5.1-RNA-光谱分析与定量

采用分光光度法对核酸进行精确定量,因为这种方法不破坏结构,并且还能回收样品.。RNA 有吸收紫外光的性质,吸收高峰在 260nm 波长处,这是单个核糖核甘酸在 256nm 和 281nm 之间吸收值的平均值。试剂、试剂盒DEPC无核酸酶的水仪器、耗材紫外分光光度计石英比色杯实验步骤一、材料与设备1)

近红外光谱分析原理

  近红外光谱主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,记录的主要是含氢基团X-H(X=C、N、O)振动的倍频和合频吸收。不同团(如甲基、亚甲基,苯环等)或同一基团在不同化学环境中的近红外吸收波长与强度都有明显差别,NIR  光谱具有丰富的结构和组成信息,非常适合用于碳氢有机

红外光谱分析的用途

红外光谱分析可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。红外光谱具有高度特征性,可以采用与标准化合物的红外光谱对比的方法来做分析鉴定。已有几种汇集成册的标准红外光谱集出版,可将这些图谱贮存在计算机中,用以对比和检索,进行分析鉴定。利用化学键的特征波数来鉴别化合物的类型,并可用于

体内药物:光谱分析法

  光谱分析法 (Spectroscopic Analysis)包括比色法(COL)、紫外分光光度法 (UV)、荧光分光光度法 (FLUOR)和原子吸收分光光度法  (AAS)。光谱分析法是体内药物分析中应用较早的方法之一。其特点是仪器结构简单,测定快速简便。但由于这些方法本身不具分离功能,易受到结

光谱分析法的概念

光谱分析法是基于物质内能状态改变而发生电磁辐射的发射或吸收与物质组成及其构之间的关系,以对光谱的波长和强度测量为基础的分析方法,相关的分析方法有原子光语法、分子光谱法以及X射线荧光光谱法等。

什么是光谱分析法

  光谱分析法是根据物质的光谱来鉴别物质及确定其化学组成 和相对含量的方法,是以分子和原子的光谱 学为基础建立起的分析方法。包含三个主要 过程:①能源提供能量;②能量与被测物质 相互作用;③产生被检测讯号。光谱法分类 很多,用物质粒子对光的吸收现象而建立起的 分析方法称为吸收光谱法,如紫外-可见吸收

光谱分析(分光光度技术)

 利用各种化学物质所具有的发射、吸收或散射光谱谱系的特征,来确定其性质、结构或含量的技术,称为光谱分析技术。   分类:光谱分析技术分为发射光谱分析(荧光分析法和火焰光度法)、吸收光谱分析(可见及紫外光分光光度法、原子吸收分光光度法)和散射光谱分析(比浊法)。   (一)可见及紫外分光光度法   1

拉曼光谱的光谱分析

实验做出的谱图(见附图,以波长为单位)标准的谱图(如下,以波数为单位)通过的结构分析解释光谱:分子为四面体结构,一个碳原子在中心,四个氯原子在四面体的四个顶点。当四面体绕其自身的一轴旋转一定角度,或记性反演(r—-r)、或旋转加反演之后,分子的几何构形不变的操作称为对称操作,其旋转轴成为对称轴。CC

红外光谱分析的用途

红外光谱分析可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。红外光谱具有高度特征性,可以采用与标准化合物的红外光谱对比的方法来做分析鉴定。已有几种汇集成册的标准红外光谱集出版,可将这些图谱贮存在计算机中,用以对比和检索,进行分析鉴定。利用化学键的特征波数来鉴别化合物的类型,并可用于

X射线荧光光谱分析

X射线荧光的激发源使用X射线而不使用电子束,因为使用X射线避免了样品过热的问题。几乎所有的商品X射线荧光光谱仪均采用封闭的X射线管作为初始激发光源。某些较简单的系统可能使用放射性同位素源,而电子激发一般不单独使用在X射线荧光光谱仪中,它仅限于在电子显微镜中X射线荧光分析中使用。X射线荧光谱仪具有快速

光谱分析方法的基本介绍

  光谱分析法指的是物质的一类分析方法,主要有原子发射光谱法、原子吸收光谱法、紫外-可见吸收光谱法、红外光谱法等。根据电磁辐射的本质,光谱分析又可分为分子光谱和原子光谱。它主要是利用分子之中价电子的跃进而产生的,因此这种吸收光谱决定于分子中价电子的分布和结合情况。光谱分析法具有分析速度较快、操作简便

荧光光谱分析仪

和大多数光谱分析方法一样,荧光光谱分析仪主要由光源、单色器或波长选择系统,样品池和检测器。和其他光谱仪器的一个重要区别在于,荧光光谱需要两个独立的波长选择系统,一个用于激发,另一个用于发射(王镇浦等, 1989; 赵藻藩等, 1990)。 (1) 光源  在紫外-可见区范围内,常用的光源是氙弧灯和高