Nature|发现无光合作用但能产生叶绿素的生物

Apicomplexa(apicomplexan parasites, 顶复门寄生虫)是一类专性细胞内寄生虫。一些顶复门寄生虫是人类疾病的致病因子,如疟疾和弓形虫病。 Apicomplexans是从光养生物进化而来的,但如何向寄生发生过渡的目前仍然未知。基于环境DNA的调查,有研究在珊瑚礁中发现几个apicomplexans分枝的谱系【1,2】。现已知,珊瑚礁的珊瑚与光合作用的Symbiodiniaceae dinoflagellates(例如,Symbiodinium)存在共生关系,但珊瑚的其它重要微生物共生体的鉴定具有一定的挑战性。 近日,来自加拿大不列颠哥伦比亚大学(University of British Columbia)的研究团队与合作者在Nature发表了题为A widespread coral-infecting apicomplexan with chlorophyll biosynthesis gen......阅读全文

叶绿素的荧光现象

叶绿素的荧光现象与磷光现象(1) 荧光现象:是指叶绿素在透射光下为绿色,而在反射光下为红色的现象,这红光就是叶绿素受光激发后发射的荧光。叶绿素溶液的荧光可达吸收光的10%左右。而鲜叶的荧光程度较低,指占其吸收光的0.1~1%左右。(2) 磷光现象:叶绿素除了照光时间能辐射出荧光外,去掉光源后仍能辐射

植物叶片中的叶绿素含量受哪些外界因素的影响?

高等植物的绿色叶片是光合作用的主要器官,叶绿体是进行光合作用核心反应的细胞 器,光合作用的能量转换和碳同化过程都在其中完成,叶绿体中叶绿素的含量直接影响着植物的生长发育。因此叶片叶绿素含量的消长规律是反映叶片生理活性变化 的重要指标之一。因此叶绿素含量的测量就有一定的使用价值了,叶绿素含量的快速无损

手持叶绿素仪测定植物叶绿素含量的三大作用

手持叶绿素仪可以即时测量植物的叶绿素相对含量(单位SPAD)或绿色程度、氮含量、叶面湿度、叶面温度。但是对于很多不了解它的朋友来说,可能很难理解为什么要使用手持叶绿素仪测定植物叶绿素含量,那么这里就介绍一下使用手持叶绿素仪测定植物叶绿素含量的三大作用。1.反映植物真实的硝基需求量并且帮助了解土壤硝基

叶绿素荧光的原理

1)调制叶绿素荧光调制叶绿素荧光全称脉冲-振幅-调制(Pulse-Amplitude-Modulation,PAM)叶绿素荧光,我们国内一般简称调制叶绿素荧光,测量调制叶绿素荧光的仪器叫调制荧光仪,或叫PAM。调制叶绿素荧光(PAM)是研究光合作用的强大工具,与光合放氧、气体交换并称为光合作用测量的

叶绿素荧光的原理

1)调制叶绿素荧光调制叶绿素荧光全称脉冲-振幅-调制(Pulse-Amplitude-Modulation,PAM)叶绿素荧光,我们国内一般简称调制叶绿素荧光,测量调制叶绿素荧光的仪器叫调制荧光仪,或叫PAM。调制叶绿素荧光(PAM)是研究光合作用的强大工具,与光合放氧、气体交换并称为光合作用测量的

原初反应转变的方式

①放热激发态的叶绿素分子在能级降低时以热的形式释放能量,此过程又称内转换(internal conversion)或无辐射退激(radiationless deexcitation)。如叶绿素分子从第一单线态降至基态或三线态,以及从三线态回至基态时的放热。这些都是无辐射退激。另外吸收蓝光处于第二单线

叶绿素测定仪:植物叶绿素的定量测定

    为什么要测定植物叶绿素含量?因为叶绿素是植物进行光合作用的主要色素,其含量高低对于植物的光合作用有明显的影响,而且叶绿素的含量与植物氮素营养还有 密切的关系,通过测定植物叶绿素含量,还可以了解植物营养状况和作物对土壤中氮的利用情况等,因此测定植物叶绿素含量是科学施肥、育种及植物病理研究上的

叶绿素荧光测定的原理及其意义

叶绿素荧光现象是由传教士Brewster首次发现的。1834年Brewster发现,当一束强太阳光穿过月桂叶子的乙醇提取液时,溶液的颜色变成了绿色的互补色¬¬——红色,而且颜色随溶液的厚度而变化,这是历史上对叶绿素荧光及其重吸收现象的首次记载。后来,Stokes(1852)认识到这是一种光发射现象,

叶绿素荧光测定的原理及其意义

叶绿素荧光现象是由传教士Brewster首次发现的。1834年Brewster发现,当一束强太阳光穿过月桂叶子的乙醇提取液时,溶液的颜色变成了绿色的互补色¬¬——红色,而且颜色随溶液的厚度而变化,这是历史上对叶绿素荧光及其重吸收现象的首次记载。后来,Stokes(1852)认识到这是一种光发射现象,

新型光合作用可利用近红外光

  据美国《每日科学》网站报道,根据近日发表于《科学》杂志上的一篇论文,英国帝国理工学院牵头的一个国际科研团队发现,在阴暗环境下生存的蓝藻内,存在一种新型光合作用。与目前地球上占主导地位的利用红光的光合作用不同,新光合作用利用的是近红外光。该发现不仅改变了人们对光合作用基本原理的认识,甚至还可能改写

叶绿素的法定计量单位分析

叶绿素是作物进行光合作用的主要场所,叶绿素含量的多少,直接影响这作物的光合效率。光合效率是一个累积有机物的过程,因此,叶绿素含量直接关系这作物的产量。叶绿素是绿色植物体内的基本色素,在光合作用的光能吸收、传递和转化中起不可或缺的作用。在植物生理学特别是光合作用研究中,经常涉及叶绿素含量的测定。叶绿素

原初反应吸收与传递激发态

激发态是不稳定的状态,经过一定时间后,就会发生能量的转变,转变的方式有以下几种:①放热激发态的叶绿素分子在能级降低时以热的形式释放能量,此过程又称内转换(internal conversion)或无辐射退激(radiationless deexcitation)。如叶绿素分子从第一单线态降至基态或三

叶绿素测定仪在农业领域的应用

在研究农作物产量影响因素时,经常会需要用到农作物叶绿素含量这一参数,叶绿素为何会对农作物产量产生影响呢?这是由于叶绿素能够进行光合作用将光能转变为化学能,是植物营养物质的主要来源之一。根据叶绿素测定仪分析显示农作物叶绿素含量越高其光合作用越强。农作物体内的叶绿素与其它有机物一样频繁更替。叶绿素测定仪

叶绿素荧光技术发展历程及测量原理(一)

叶绿素荧光,作为光合作用研究的探针,得到了广泛的研究和应用。叶绿素荧光不仅能反映光能吸收、激发能传递和光化学反应等光合作用的原初反应过程,而且与电子传递、质子梯度的建立及ATP合成和CO2固定等过程有关。几乎所有光合作用过程的变化均可通过叶绿素荧光反映出来,而荧光测定技术不需破碎细胞,不伤害生物体,

叶绿素荧光技术发展历程及测量原理(二)

饱和脉冲技术工作原理 所谓饱和脉冲技术,就是打开一个持续时间很短(一般小于1 s)的强光关闭所有的电子门(光合作用被暂时抑制),从而使叶绿素荧光达到最大。饱和脉冲(Saturation Pulse, SP)可被看作是光化光的一个特例。光化光越强,PS II释放的电子越多,PQ处累积的电子

叶绿素a和叶绿素b含量测定实验

纸层析法 叶绿素a溶解度比b高所以他跑得快

叶绿素测定仪对农作物的影响

叶绿素能够进行光合作用将光能转变为化学能,是植物营养物质的主要来源之一。根据叶绿素测定仪分析显示农作物叶绿素含量越高其光合作用越强。农作物体内的叶绿素与其它有机物一样频繁更替。叶绿素测定仪主要是通过测量叶片在两种波长范围内的透光系数来确定叶片当前叶绿素的相对数量,也就是在叶绿素选择吸收特定波长光的两

使用便携式叶面积测定仪的三大作用

便携式叶面积测定仪近年来应用广泛,它能够得到人们的认可和使用,那么肯定是因为它能为农业生产提供帮助,那么下面就来分析一下便携式叶面积测定仪的三大作用。1.辨别植物叶绿素含量的高低,方便提取。研究表明,叶绿素具有显著的保肝护肝、造血、解毒、抗癌、延缓衰老、防止基因突变,促进创伤愈合、脱臭和改善便秘、降

《科学》:叶绿素D可能影响全球碳循环

此前研究认为,叶绿素D对地球碳循环的作用可以忽略不计 日本一研究小组在新一期美国《科学》杂志上报告说,一种能使光合作用在近红外线照射下进行的物质——叶绿素D在地球海洋与湖泊中广泛存在,这种叶绿素可能是地球上碳循环的驱动力之一。 此前的研究认为,叶绿素D只存在于少数海洋藻类内部,分布在海洋中很有限

植物群体光合作用测量

光合作用的测量已经进入“群体(冠层)测量”的时代,单个叶片的测量已经远远不能满足实际需求。“群体(冠层)测量”+“自动监测”才是光合作用测量的发展趋势。“群体叶绿素荧光”+“多通道群体气体交换”组成了完美的群体光合作用测量方案。光合作用是植物最重要的代谢途径之一,被称为地球上最重要的化学反应。对植物

叶绿素荧光参数npq计算

叶绿素荧光参数是一组用于描述植物光合作用机理和光合生理状况的变量或常数值,反映了植物“内在性 ”的特点 , 被视为是研究植物光合作用与环境关系的内在探针 。现常用于分析叶绿素荧光参数的技术称叶绿素荧光动力学技术,其在测定叶片光合作用过程中光系统对光能的吸收、传递、耗散、分配等方面具有独特的作用,该技

手持式叶绿素荧光仪应用中的优势

  叶绿素a荧光是研究各种逆境胁迫(干旱、高温、低温、营养缺失、污染、病害等)对植物影响,以及对各种水生植物、大型海藻、珊瑚等进行生理生态测量的强大工具。叶绿素a荧光不仅能反映光能吸收、激发能传递和光化学反应等光合作用的原初反应过程,而且与电子传递、质子梯度的建立及ATP合成和CO2固定等过程有关。

什么是叶绿素

叶绿素,是一类与光合作用有关的最重要的色素。光合作用是通过合成一些有机化合物将光能转变为化学能的过程。叶绿素实际上见于所有能营光合作用的生物体,包括绿色植物、原核的蓝绿藻(蓝菌)和真核的藻类。叶绿素从光中吸收能量,然后能量被用来将二氧化碳转变为碳水化合物。

光谱成像技术应用于沙漠及生物土壤结皮研究

生物结皮又称生物土壤结皮(Biological soil crusts,BSCs),由蓝细菌、藻类、苔藓、地衣和真菌等及其菌丝、分泌物与土壤砂砾粘结形成的复合物,是沙漠生态系统的重要组成部分,维持着沙漠生物循环和生态系统的健康和可持续发展。光谱成像技术具有快速、高效、无损伤、高通量等优点,广泛应

叶绿素的荧光现象

光合色素的荧光现象和磷光现象叶绿素溶液在透射光下呈绿色,而在反射光下呈红色,这种现象称为叶绿素荧光现象。叶绿素为什么会发荧光呢?当叶绿素分子吸收光量子后,就由最稳定的、能量的最低状态-基态(ground state)上升到不稳定的高能状态-激发态(excited state)。叶绿素分子有红光和蓝光

解释叶绿素的荧光现象

光合色素的荧光现象和磷光现象叶绿素溶液在透射光下呈绿色,而在反射光下呈红色,这种现象称为叶绿素荧光现象。叶绿素为什么会发荧光呢?当叶绿素分子吸收光量子后,就由最稳定的、能量的最低状态-基态(ground state)上升到不稳定的高能状态-激发态(excited state)。叶绿素分子有红光和蓝光

叶绿素测定仪的重要作用

  可以即时测量植物的叶绿素相对含量或“绿色程度”,植物叶片中的叶绿素含量指示了植物本身的状况,长势良好的植物的叶子会含有更多的叶绿素,叶绿素的含量与叶片中氮的含量有很密切的关系,因而叶绿素测量值还能说明植物真实的硝基需求量,通过这种仪器有利于合理施加氮肥,提高氮的利用率,并可保护环境(防止施加过多

Α胺乙醯丙酸有哪些神奇之处

  在自然界中,植物的生长与发育依赖于多种复杂的生物化学反应。而在这些反应中,Α-胺乙醯丙酸(ALA)扮演着至关重要的角色。它不仅是植物叶绿素生物合成的必需前体,还在植物的生长、发育和光合作用中发挥着不可替代的作用。接下来,就让我们一起探索ALA的神奇之处。  首先,ALA在植物叶绿素生物合成中的关

叶绿素测定仪介绍

    我们肉眼所看到的植物大部分都是呈现绿色,这是为什么呢?因为,植物叶片中含有丰富的叶绿素,叶绿素是植物进行光合作用的主要色素,进行光合作用的叶绿素只吸收可见光中的红黄光和蓝紫光,而对于波长处于红黄光和蓝紫光中间的绿色光不被吸收且反射出去,这样我们看到的植物叶片就是绿色的。而叶绿素含量的测定,普

罗甸小米核桃叶绿素含量测定过程中的一些问题探讨

叶绿素是植物叶片进行光合作用最重要的物质之一,其素含量是反映植物光合作用能力的重要指标。针对叶绿素含量测定,国内外进行了诸多相关的研究,如用丙酮法提取叶绿素、叶绿素测量仪测量法、用二甲基亚砜直接浸提植物叶片叶绿素等等。每种方法都有其各自的优缺点,但是在实际应用中,现阶段最多的使用叶绿素测量仪进行测定