常用荧光染料的激发及发射波长
Fluorescent Dye (荧光染料)Excitation (激发波长, nm )Emission (发射波长, nm )Cy2 TM489506GFP(Red Shifted)488507YO-PRO TM -1491509YOYO TM -1491509Calcein494517FITC494518FluorX TM494519Alexa TM 488490520Rhodamine 110496520ABI,5-FAM494522Oregon Green TM 500503522Oregon Green TM 488496524RlboGreen TM500525Rhodamine Green TM502527Rhodamine123507529Magnesium Green TM506531Calcium Green TM506533TO-PRO ......阅读全文
荧光光谱怎么确定激发波长
对不同材料来说不同,绝大多数情况下,发射波长会随着激发波长的偏移而有所偏移。 对于固态物质,主要是因为分子与其它材料形成了π建 对于量子点溶液,激发波长也会显著导致发射光谱的不同。 但是不是绝对的,比如对于Alex555分子,发射波长的便宜往往就相对较小,这是由于分子内部的能带结构所决定的。 如果是
荧光光谱-怎么确定激发波长
(1) 如果你的仪器有三维扫描功能,那就非常简单了,按照说明书要求去做就可以了。(2) 如果仪器没有上述功能,一般可将仪器的激发波长(EX)先设定为200nm,然后进行发射波长(EM)模式扫描,(EM)波长范围暂设定为 210-800nm,然后记录所有出现的峰值波长;改变激发波长(EX)后再扫描,如
荧光光谱怎么确定激发波长
(1) 如果你的仪器有三维扫描功能,那就非常简单了,按照说明书要求去做就可以了。(2) 如果仪器没有上述功能,一般可将仪器的激发波长(EX)先设定为200nm,然后进行发射波长(EM)模式扫描,(EM)波长范围暂设定为 210-800nm,然后记录所有出现的峰值波长;改变激发波长(EX)后再扫描,如
激发波长与荧光波长有何关系
光的波长越小,光子能量越大.荧光是由激发光激发的.激发光的光子打到荧光物质上,经过一系列变化,激发出荧光.从能量角度看,一定有:激发光光子的能量>荧光光子的能量,否则多余的能量从哪来?
激发波长与荧光波长有何关系
光的波长越小,光子能量越大.荧光是由激发光激发的.激发光的光子打到荧光物质上,经过一系列变化,激发出荧光.从能量角度看,一定有:激发光光子的能量>荧光光子的能量,否则多余的能量从哪来?
激发波长与荧光波长有何关系
光的波长越小,光子能量越大.荧光是由激发光激发的.激发光的光子打到荧光物质上,经过一系列变化,激发出荧光.从能量角度看,一定有:激发光光子的能量>荧光光子的能量,否则多余的能量从哪来?
激发波长与荧光波长有何关系
光的波长越小,光子能量越大.荧光是由激发光激发的.激发光的光子打到荧光物质上,经过一系列变化,激发出荧光.从能量角度看,一定有:激发光光子的能量>荧光光子的能量,否则多余的能量从哪来?
激发波长与荧光波长有何关系?
光的波长越小,光子能量越大.荧光是由激发光激发的.激发光的光子打到荧光物质上,经过一系列变化,激发出荧光.从能量角度看,一定有:激发光光子的能量>荧光光子的能量,否则多余的能量从哪来?
激发波长与荧光波长有何关系
不具有可比性激光特点:相干性好.激光的频率、振动方向、相位高度一致,使激光光波在空间重叠时,重叠区的光强分布会出现稳定的强弱相间现象.这种现象叫做光的干涉,所以激光是相干光.而普通光源发出的光,其频率、振动方向、相位不一致,称为非相干光。荧光,又作“萤光”,是指一种光致发光的冷发光现象.当某种常温物
如何选择荧光蛋白的激发波长?
表一:波长组指定激发发射适用于UV - 紫外线360 - 380nm415nm长波通DapiVI - 紫罗兰400 - 415nm450nm长波通蓝色荧光蛋白青色荧光蛋白RB - 皇家蓝440-460nm500nm长波通绿色荧光蛋白RB - 皇家蓝440-460nm500 - 560nm带通
关于如何确定物质的荧光最大激发波长
可以根据这种荧光素的激发谱线来确定其激发波长,根据其发射谱来确定其发射波长.激发谱:不同波长的光激发荧光素后,荧光强度的变化.发射谱:同一波长的光激发荧光素后,各波长下的荧光强度的变化.一般都取峰值.
蛋白质的荧光激发波长如何选择?
荧光蛋白的波长组指定激发发射适用于UV - 紫外线360 - 380nm415nm长波通DapiVI - 紫罗兰400 - 415nm450nm长波通蓝色荧光蛋白青色荧光蛋白RB - 皇家蓝440-460nm500nm长波通绿色荧光蛋白RB - 皇家蓝440-460nm500 - 560nm
荧光光谱法的激发波长的选择
已知分子查分子信息;查不到信息的可理论预测:比分子的能带能量高,波谱蓝移0-20nm一般为较好选择。未知分子,通过测量PLE(荧光激发光谱)来确定激发波长。
荧光素的吸收波长和发射波长有什么用处
荧光属于光致发光,需选择合适的激发光波长(Ex)以利于检测。激发波长可通过荧光化合物的激发光谱来确定。激发光谱的具体检测办法是通过扫描激发单色器,使不同波长的入射光激发荧光化合物,产生的荧光通过固定波长的发射单色器,由光检测元件检测。最终得到荧光强度对激发波长的关系曲线就是激发光谱。在激发光谱曲线的
固体荧光光谱怎么找到最佳激发波长
对不同材料来说不同,绝大多数情况下,发射波长会随着激发波长的偏移而有所偏移。对于固态物质,主要是因为分子与其它材料形成了π建对于量子点溶液,激发波长也会显著导致发射光谱的不同。但是不是绝对的,比如对于alex555分子,发射波长的便宜往往就相对较小,这是由于分子内部的能带结构所决定的。
荧光探针实验中如何找到最大激发波长
荧光探针实验中找到最大激发波长:对不同材料来说不同,绝大多数情况下,发射波长会随着激发波长的偏移而有所偏移。对于固态物质,主要是因为分子与其它材料形成了π建,对于量子点溶液,激发波长也会显著导致发射光谱的不同。但是不是绝对的,比如对于alex555分子,发射波长的便宜往往就相对较小,这是由于分子内部
怎样确定一新物质的荧光激发波长
怎样确定一新物质的荧光激发波长先扫吸收光谱,以最大吸收波长为激发波长扫荧光发射光谱,然后以得到的最大发射波长返扫激发光谱,这样反复操作,直到做出激发光谱和发射光谱的镜像对称为止,这样就确定了该物质的最大激发波长和发射波长。
荧光激发光谱和荧光发射光谱的区别
荧光激发光谱:让不同波长的激发光激发荧光物质使之发生荧光,而让荧光以固定的发射波长照射到检测器上,然后以激发光波长为横坐标,以荧光强度为纵坐标所绘制的图,即为荧光激发光谱。荧光发射光谱的形状与激发光的波长无关。荧光发射光谱:使激发光的波长和强度保持不变,而让荧光物质所发出的荧光通过发射单色器照射于检
荧光激发光谱和荧光发射光谱的区别
荧光激发光谱:让不同波长的激发光激发荧光物质使之发生荧光,而让荧光以固定的发射波长照射到检测器上,然后以激发光波长为横坐标,以荧光强度为纵坐标所绘制的图,即为荧光激发光谱。荧光发射光谱的形状与激发光的波长无关。荧光发射光谱:使激发光的波长和强度保持不变,而让荧光物质所发出的荧光通过发射单色器照射于检
荧光激发光谱和荧光发射光谱的区别
荧光激发光谱:让不同波长的激发光激发荧光物质使之发生荧光,而让荧光以固定的发射波长照射到检测器上,然后以激发光波长为横坐标,以荧光强度为纵坐标所绘制的图,即为荧光激发光谱。荧光发射光谱的形状与激发光的波长无关。荧光发射光谱:使激发光的波长和强度保持不变,而让荧光物质所发出的荧光通过发射单色器照射于检
荧光激发光谱和荧光发射光谱的区别
荧光激发光谱:让不同波长的激发光激发荧光物质使之发生荧光,而让荧光以固定的发射波长照射到检测器上,然后以激发光波长为横坐标,以荧光强度为纵坐标所绘制的图,即为荧光激发光谱。荧光发射光谱的形状与激发光的波长无关。荧光发射光谱:使激发光的波长和强度保持不变,而让荧光物质所发出的荧光通过发射单色器照射于检
荧光激发光谱和荧光发射光谱的区别
荧光激发光谱:让不同波长的激发光激发荧光物质使之发生荧光,而让荧光以固定的发射波长照射到检测器上,然后以激发光波长为横坐标,以荧光强度为纵坐标所绘制的图,即为荧光激发光谱。荧光发射光谱的形状与激发光的波长无关。荧光发射光谱:使激发光的波长和强度保持不变,而让荧光物质所发出的荧光通过发射单色器照射于检
什么是荧光激发光谱、荧光发射光谱
荧光激发光谱:让不同波长的激发光激发荧光物质使之发生荧光,而让荧光以固定的发射波长照射到检测器上,然后以激发光波长为横坐标,以荧光强度为纵坐标所绘制的图,即为荧光激发光谱。荧光发射光谱的形状与激发光的波长无关 。荧光发射光谱:使激发光的波长和强度保持不变,而让荧光物质所发出的荧光通过发射单色器照射于
什么是荧光激发光谱、荧光发射光谱
荧光激发光谱:让不同波长的激发光激发荧光物质使之发生荧光,而让荧光以固定的发射波长照射到检测器上,然后以激发光波长为横坐标,以荧光强度为纵坐标所绘制的图,即为荧光激发光谱。荧光发射光谱的形状与激发光的波长无关 。荧光发射光谱:使激发光的波长和强度保持不变,而让荧光物质所发出的荧光通过发射单色器照射于
单分子荧光染料——ATTO荧光染料
单分子荧光检测技术是近十年来迅速发展起来的一种超灵敏的检测技术,其检测尺度可以精确到纳米量级,是单分子检测的首选方法。该检测技术利用荧光标记来显示和追踪单个分子的构象变化、动力学、单分子之间的相互作用以及进行单分子操纵。而荧光染料作为重要的标记物在单分子检测中起到了举足轻重的作用。荧光染料,指吸收某
单分子荧光染料——ATTO荧光染料
单分子荧光检测技术是近十年来迅速发展起来的一种超灵敏的检测技术,其检测尺度可以精确到纳米量级,是单分子检测的首选方法。该检测技术利用荧光标记来显示和追踪单个分子的构象变化、动力学、单分子之间的相互作用以及进行单分子操纵。而荧光染料作为重要的标记物在单分子检测中起到了举足轻重的作用。荧光染料,指吸收某
为什么分子的荧光波长比激发光波长长
荧光波能量较低,而能量与频率成正比,故其频率较低,又c=λν(νλ代表频率、波长c为光速,不变量),所以波长较长。
多色流式实验荧光素的选择(一)
如今,流式细胞术已经成为一项功能强大的技术,可在数秒内对数千个单个细胞或其他颗粒的多项参数进行分析。在流式细胞分析中,荧光素受到一定波长的激光激发后,释放出的能量能发射出一定波长的荧光,因此我们在选择荧光素时应注意它们的激发波长和发射波长,以选择正确的激光器和荧光组合。随着多色流式细胞仪的出现,新荧
荧光染料
中文名荧光染料外文名fluorescent dye定义:荧光染料是指吸收某一波长的光波后能发射出另一波长大于吸收光的光波的物质。它们大多是含有苯环或杂环并带有共轭双键的化合物。荧光染料可以单独使用,也可以组合成复合荧光染料使用。
荧光素标记试剂与酶标试剂
(1)酶标试剂:酶标抗体仅需适当底物和普通光学显微镜即可高度敏感地检出抗原。由于信号是通过吸收光的差异,而非发射光来检测,底物的不溶性显色产物分布在酶所在位置的周围区域,因此这种检测方法尚不能达到荧光技术的分辨率。 酶反应后出现沉淀,在酶所处位置周围产生不溶性显色产物,通过底物的显色来检出