活体生物发光成像技术的最新进展

活体动物体内光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。利用一套非常灵敏的光学检测仪器,让研究人员能够直接监控活体生物体内的细胞活动和基因行为。通过这个系统,可以观测活体动物体内肿瘤的生长及转移、感染性疾病发展过程、特定基因的表达等生物学过程。传统的动物实验方法需要在不同的时间点宰杀实验动物以获得数据, 得到多个时间点的实验结果。相比之下,可见光体内成像通过对同一组实验对象在不同时间点进行记录,跟踪同一观察目标(标记细胞及基因)的移动及变化,所得的数据更加真实可信。另外, 这一技术对肿瘤微小转移灶的检测灵敏度极高,不涉及放射性物质和方法, 非常安全。 因其操作极其简单、所得结果直观......阅读全文

分子影像学与干细胞移植活体示踪的研究进展

【摘要】  近年来,干细胞在神经系统疾病、血液病和心脏疾病治疗中获得广泛应用。干细胞移植后,活体示踪干细胞的存活和迁徙具有重要意义。分子影像学技术的发展使干细胞活体示踪成为可能,光学成像、磁共振成像、单光子发射计算机断层显像、正电子发射计算机断层显像是临床和实验中常用的分子影像学方法,具有各自的

化学发光及生物发光的原理(1)-概述

化学发光 (ChemiLuminescence ,简称为 CL) 分析法是分子发光光谱分析法中的一类,它主要是依据化学检测体系中待测物浓度与体系的化学发光强度在一定条件下呈线性定量关系的原理,利用仪器对体系化学发光强度的检测,而确定待测物含量的一种痕量分析方法。化学发光与其它发光分析的本质区别是体系

凝胶/化学发光成像系统应用范围

总体上来说凝胶成像可应用于:凝胶成像系统可以用于:蛋白质、核酸、多肽、氨基酸、多聚氨基酸等其他生物分子的分离纯化结果作定性分析(1)分子量定量对于一般常用的DNA胶片,利用分子量定量功能,通过对胶上DNA Marker条带的已知分子量注释,自动生成拟合曲线,并以它衡量得到未知条带的分子量。通过这种方

化学发光成像突破乙肝检测瓶颈

乙肝病毒具有慢性化以及顽强的抵抗力,是一种常见的病毒疾病。乙肝病毒全称乙型肝炎病毒,是一种常见的病毒疾病,早期不易发现,发现后不易治疗或是根治;乙肝病毒具有一定的侵蚀性,不仅对肝脏本身,对于其他器官或是组织都会造成一定的损伤;最重要的是,乙肝病毒易变异、易致癌。  目前,常用的检测方法主要是酶联免疫

电脑化学发光凝胶成像系统

全自动凝胶成像分析系统应用范围:本系统集知识产权国家一体的全自动凝胶成像分析系统。采用进口专业CCD和分析软件.进口电动变焦镜头.具有图像清晰.操作简便等优点.产品经华东理工大学.武汉大学.中国科学院武汉病毒所.华中师范大学.华中科技大学.第四军医大学.西北农林大学.兰州大学.华南农业大学、温州医学

2013年激光共聚焦扫描显微学最新进展学术研讨会在京召开

  2013年3月19日,由北京理化分析测试技术学会和北京市电镜学会主办的2013年度激光共聚焦扫描显微学最新进展学术研讨会在北京北科大厦成功举办。本次研讨会以推动北京市及周边省市激光共焦扫描显微学的进步和发展,提高广大相关工作者的学术及技术水平,促

凝胶/化学发光成像系统描绘化学发光检测的灵敏度

灵敏度指的是某种东西可靠检测的最低水平。“某种东西”是指在一个分析测试中的测试物。测试物是被标记了一种可检测的东西,如化学发光化合物或的一种酶。分析物也可以是一种通过与具有标记的亲合物有特异性结合反应而检测的物质。所谓的可靠检测指的是针对一个空白测试样品,检测器能够重复感应到最低水平的信号,而这种信

如何选购凝胶成像分析系统(三)

(8)、软件功能不论何种计算机,它们都是由硬件和软件所组成,两者是不可分割的。人们把没有安装任何软件的计算机称为裸机。凝胶成像分析系统也不例外,硬件设备再好,如果不配上好的软件,也无法发挥它应有的功能。作为凝胶成像系统软件功能和用途都基本相似,这里我们介绍一下最关注的几个特点: A、软件的基本功能:

大肠杆菌的检测方法ATP-生物发光技术相关介绍

  ATP 生物发光技术是近年来发展较快的微生物快速检测方法。细胞内源性的ATP含量可以反应活细胞的数量和活性。其化学反应如下:ATP+D-Luciferin+O2→Oxyluciferin+AMP+PPi+O2+Light  当细胞受损或死亡时,其ATP值迅速下降或消失,基于这一原理,检测细胞内的

活体成像中荧光色素标记细胞的方法举例

   活体光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)技术与荧光(fluorescence)技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,今天,生物发光标记物可以标记到任何一种基因上,使对基因功能的全面细致研究

活体成像中荧光色素标记细胞的方法举例

活体成像中荧光色素标记细胞的方法举例    活体光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)技术与荧光(fluorescence)技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,今天,生物发光标记物可以标记到任何

影响小动物活体可见光成像的因素(三)

然而,在活体成像过程,并不是总能保持各方面因素都达到最佳状态,那么在这种情况下,应该从哪些方面考虑,去获得高质量的图片呢?北京博益伟业仪器有限公司通过对一系列的实验结果分析后,建议:首先:构建带有强启动子的融合表达蛋白。这是整个活体成像的第一步,也是最重要的一步。从上面的分析可以看出,启动子的强弱对

活体成像中荧光色素标记细胞的方法举例

  活体光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)技术与荧光(fluorescence)技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,今天,生物发光标记物可以标记到任何一种基因上,使对基因功能的全面细致研

活体成像中荧光色素标记细胞的方法举例

 活体光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)技术与荧光(fluorescence)技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,今天,生物发光标记物可以标记到任何一种基因上,使对基因功能的全面细致研究

影响小动物活体可见光成像的因素(一)

小动物活体成像,是分子影像学的一种,主要通过生物发光(bioluminescence)与荧光(fluorescence)两种技术来进行。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。自从1999年,美国

影响小动物活体可见光成像的因素(二)

3 对于同样级别的CCD芯片来讲,信噪比的高低则对最后的成像质量更为关键,因为信噪比不仅与CCD本身有关,更与系统的整体配置和环境密切相关。下面这个公式显示了信噪比(SNR)的计算方法,从中可以看到,QE值,读出噪声和暗噪声是影响SNR的主要因素,单纯强调任何一个方面都不具有实际意义。Roper公司

无形“探针”,“洞见”人体

  更精准地实现人体器官和病灶部位无损害可视化,一直是人们追求的目标。  5月10日,在复旦大学庆祝建校118周年系列学术报告中,复旦大学化学系教授、上海市生物医学检测试剂工程中心主任张凡以《透视人体健康的新技术——近红外光化学探针用于生物医学诊断》为题,分享了自己深耕多年的近红外荧光分子“探针”研

分子影像学与干细胞移植活体示踪的研究进展

  作者:冯铭 王任直 作者单位:中国医学科学院-中国协和医科大学北京协和医院神经外科, 北京 100730   【摘要】 近年来,干细胞在神经系统疾病、血液病和心脏疾病治疗中获得广泛应用。干细胞移植后,活体示踪干细胞的存活和迁徙具有重要意义。分子影像学技术的发展使干细胞活体示踪成为可能,光学成

荧光探针研究获进展-实现单一波长激发双色荧光成像

  近日,中国科学院深圳先进技术研究院副研究员储军主持研发的新型大斯托克斯位移荧光蛋白取得突破,实现了在小鼠脑内单一波长激发双色荧光成像和高灵敏的生物发光成像。该工作以A bright cyan-excitable orange fluorescent protein facilitatesdual

三种发光类型:光照发光、生物发光和化学发光简介

一种物质由电子激发态回复到基态时,释放出的能量表现为光的发射,称为发光(luminescence)。发光可分为三种类型:光照发光、生物发光和化学发光。1、光照发光(photoluminescence)发光剂经短波长入射光照射后进入激发态,当回复至基态时发出较长波长的可见光。2、生物发光(biolum

分子影像成像分析系统的选择应该遵循哪些原则

A 分子影像成像分析系统的厂商的产品线要拥有普通凝胶成像分析系统 化学发光成像分析系统,多 色荧光成像分析系统,多功能活体成像分析系统这些比较长的产品线,这样可以给老师足够的选择空间。 并且可以从普通凝胶成像分析系统可以升级到化学发光成像分析系统的空间,从化学发光成像分析系统升 级到多色荧光成像分析

福建物构所Progress-in-Materials-Science综述:无机长余辉材料新兴的光学诊疗剂

  光学诊疗技术在基础研究和应用研究中发挥着重要作用。光学诊疗技术的发展对光学诊疗剂的诊断和治疗性能提出了新的要求。无机长余辉材料由于其独特的电子储存和释放机制,在激发光停止激发后仍然能够持续发光,这种持续发光也被称为余辉。无机长余辉材料的余辉发射特性使它们在疾病诊疗中展现出独特的优势,是光学诊疗应

无形“探针”,“洞见”人体

原文地址:http://news.sciencenet.cn/htmlnews/2023/5/500456.shtm更精准地实现人体器官和病灶部位无损害可视化,一直是人们追求的目标。5月10日,在复旦大学庆祝建校118周年系列学术报告中,复旦大学化学系教授、上海市生物医学检测试剂工程中心主任张凡以《

生物发光现象的工程应用

生物发光现象还启发人类从工程角度研究、模拟这种发光效率极高而产热量极少的荧光现象,新一代冷光源的研制就是一例。在应用方面,如军事上观察海洋动物发光的突然爆发,可以判别水下军事设施及其他各种敌对目的物。生化分析中,利用虫荧光素与虫荧光酶加在一起遇到ATP就会发出荧光,而且发光强度正比于ATP浓度的现象

生物发光的定义和机制

生物发光(bioluminescence)是指生物体发光或生物体提取物在实验室中发光的现象。它不依赖于有机体对光的吸收,而是一种特殊类型的化学发光,化学能转变为光能的效率几乎为100%。也是氧化发光的一种。生物发光的一般机制是:由细胞合成的化学物质,在一种特殊酶的作用下,使化学能转化为光能。

Nature:研究团队开发高分辨率X射线发光扩展成像技术

  具有主动读出机制的平板X射线探测器在医疗诊断,安全检查和工业检查中已发现了关键的应用。当前涉及平板探测器的X射线成像技术难以对三维物体成像,因为在高度弯曲的表面上制造大面积,柔性,基于硅的光电探测器仍然是一个挑战。  2021年2月17日,福州大学陈秋水,杨黄浩及天津大学-新加坡国立大学福州联合

了解化学发光成像分析软件的功能应用

系统管理 支持windows2000/xp操作系统,系统能保存多种格式的图像 图像及报告的打印 凝胶图像的获取 通过健生凝胶图像分析仪直接获取凝胶图像,由 TWAIN接口获得扫描仪和数码相机的图像,获取粘贴板上的图像与photoshop,word等其它软件交换图像资源 图像复制功能,即对所获取的原始

中科院实现神经元脑网络活体成像

中国科学院精密测量科学与技术创新研究院研究员徐富强、王杰研究团队基于新型基因编码生物磁共振成像技术,首次实现特异类型神经元网络的在体检测。相关研究成果在影像学期刊《神经影像》(Neuroimage)上发表。 目前,基于病毒的脑网络示踪技术主要依赖于光学成像,广泛应用于脑组织切片免疫荧光染色成像检

Molecular-Psychiatry:-星形胶质细胞活体成像研究中获进展

  近日,中国科学院精密测量科学与技术创新研究院、中科院深圳先进技术研究院研究人员基于新型基因编码生物磁共振成像技术,建立了在体无创全脑检测星形胶质细胞的新技术。  星形胶质细胞是哺乳动物中枢神经系统(Central nervous system,CNS)中含量最丰富、分布最广、胞体最大的一种神经胶

关于CCD简介及活体成像设备关键部件CCD选择

CCD简介CCD,英文全称:Charge-coupled Device,中文名称:电荷耦合元件。CCD是一种半导体器件,能够把光学影像转化为数字信号。 CCD上植入的微小光敏物质称作像素(Pixel)。一块CCD上包含的像素数越多,每个像素单元面积越大,其提供的画面分辨率也就越高。CCD的作