紫外光谱仪与红外光谱仪的区别是

紫外光谱仪是物质中分子吸收200-800nm光谱区内的光而产生的。这种分子吸收光谱产生于价电子和分子轨道上的电子在电子能级跃迁原子或分子中的电子,总是处在某一种运动状态之中。每一种状态都具有一定的能量,属于一定的能级。这些电子由于各种原因如受光、热、电的激发而从一个能级转到另一个能级,称为跃迁。当这些电子吸收了外来辐射的能量就从一个能量较低的能级跃迁到一个能量较高的能级。因此,每一跃迁都对应着吸收一定的能量辐射。紫外光谱仪具有不同分子结构的各种物质,有对电磁辐射显示选择吸收的特性。吸光光度法就是基于这种物质对电磁辐射的选择性吸收的特性而建立起来的,它属于分子吸收光谱。 紫外光谱仪在真空环境下覆盖100-400nm(3-12.4eV),在大气环境下覆盖190nm-400nm(3-6.5eV)。结合真空紫外光源和蜗轮驱动实现快速的光谱扫描,可作为一个优异的真空紫外单色光源使用。在分辨率要求不高的情况下,配备单通道探测器,H20......阅读全文

色散型红外光谱仪

一、实验目的1、学习并掌握色散型红外光谱仪的使用方法和原理;2、了解红外光谱的应用,以及掌握红外光区分析时试样的制备方法;3、观察不同基团的特征吸收,并从红外光谱图中识别基团以及从这些基团确定未知化合物的主要结构。二、实验原理1、色散型红外光谱仪基本工作原理红外分光光度计,是一种用棱镜或光栅进行分光

红外光谱仪操作流程

依次打开电脑和红外光谱仪主机电源,双击图标进入软件,查看软件右上角是否为绿色勾点。将实验设置到光学台上,看最大值是否正常,说明仪器稳定,然后开始数据采集。左起第二个图标收集背景,等待背景扫描完成。将压片或其他投影样品放入投影样品架,并关闭样品箱。单击左边第三个图标采集样本,输入样本名称,然后单击确定

VERTEX-傅立叶变换红外光谱仪

VERTEX 傅立叶变换红外光谱仪是布鲁克公司 30 多年开拓和开发经验的结晶。VERTEX 系列建立在完全可升级、设计高度灵活的光学平台之上,具有一系列广泛的功能,包括布鲁克人工智能网络 (BRAIN)、自动元件识别 (ACR)、即插即用以太网连接、自动附件识别功能 (AAR) 等。

红外光谱仪的理论概述

  电磁光谱的红外部分根据其同可见光谱的关系,可分为近红外光、中红外光和远红外光。 远红外光(大约400-10 cm-1)同微波毗邻,能量低,可以用于旋转光谱学。中红外光(大约4000-400 cm-1)可以用来研究基础震动和相关的旋转-震动结构。更高能量的近红外光(14000-4000 cm-1)

近红外光谱仪的概述

  近红外光谱技术(NIR)是90年代以来发展极快、十分引人注目的分析技术之一。随着NIR分析方法的深入应用和发展,已逐渐得到大众的普遍接受和官方的认可。1978年美国和加大就采用近红外法作为分析小麦蛋白质的标准方法,1998年美国材料试验学会制订了近红外光谱测定多元醇(聚亚安酯原材料)中羟值含量的

红外光谱仪的原理简介

  傅立叶变换红外光谱仪被称为第三代红外光谱仪,利用麦克尔逊干涉仪将两束光程差按一定速度变化的复色红外光相互干涉,形成干涉光,再与样品作用。探测器将得到的干涉信号送入到计算机进行傅立叶变化的数学处理,把干涉图还原成光谱图。

傅立叶红外光谱仪的特点

FT-IR的特点:(1)扫描速度快     扫描时间内同时测定所有频率的信息(2)具有很高的分辨率   (3)灵敏度高         不用狭缝和单色器,更高的能量通过 (4)高精度优点

红外光谱仪的应用概述

  应用于染织工业、环境科学、生物学、材料科学、高分子化学、催化、煤结构研究、石油工业、生物医学、生物化学、药学、无机和配位化学基础研究、半导体材料、日用化工等研究领域。  红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体

色散型近红外光谱仪器

  色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的样品检测器元件进行投射或反射分析。  该类型仪器的优点:  使用扫描型近红

便携式红外光谱仪

具体配置1.主机:光学模块集成部分、电学模块集成部分、液晶显示器、数据存储器等。可以对固体、浸膏等进行检测。 2.电源适配器:满足把220伏电压转变成能够适合仪器正常工作的电压,体积小,重量轻,减轻仪器整体的重量。 3.光源:预准直高能量卤钨灯光源,平均寿命大于10000小时,光源更换简单。 4.液

近红外光谱仪相关介绍

近红外光谱分析技术是一项基于近红外光谱技术与化学计量学分析模型技术的综合分析技术,可实现对含有C-H、N-H、O-H等有机官能团的样品进行快速、无损、定性/定量分析,是现场快速筛查和加工过程实时检测的理想手段。近红外光谱仪广泛应用于农业、饲料、粮油、食品、石油化工、环境等行业。近红外光谱仪主要广泛应

红外光谱仪有什么特点

红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱,又称分子振动光谱或振转光谱。在有机物分子中,组成化学键或官能团的原子处于不断振动的状态,其振动频率与红外光的振动频率相当。所以,用红外光照射有机物分子时,分子中的化学键或

红外光谱仪的样品准备

  为了保护仪器和保证样品红外谱图的质量,送本仪器分析的样品,必须做到:  (1)样品必须预先纯化,以保证有足够的纯度;  (2)样品须预先除水干燥,避免损坏仪器,同时避免水峰对样品谱图的干扰;  (3)易潮解的样品,请用户自备干燥器放置;  (4)对易挥发、升华、对热不稳定的样品,请用带密封盖或塞

红外光谱仪该如何保养?

红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。1、红外光谱仪工作时,室验室温度、相对湿度都必须符合仪器要求,所用电源应配备有稳压装置和接地线。2、室内一定要有除湿装置;3、为防止仪器受潮而影响使用寿

红外光谱仪的维修介绍

    红外光谱仪维修常见故障及排査方法导读:    红外光谱仪不能正常工作时,可先启动仪器自诊断功能,检查仪器某些器件工作状况,或者根据仪器的异常现象,参照仪器使用说明书进行排查。    若发现是光谱仪硬件损坏,应请专业维修工程师来现场处理,若无法查出故障原因,也应及早与维修工程师沟通,及时传递仪

近红外光谱仪应用邻域

应用领域编辑葡萄酒乙醇,含糖量,有机酸,含氮值,pH 值等白酒 原料中的水分,淀粉,支链淀粉;酒醅中的水分,pH 值,淀粉和残糖等啤酒大麦原料中的水分,麦芽糖;啤酒中的乙醇和麦芽糖等饮料 (可乐、 果汁等)咖啡因,糖分,酸度,果汁真伪鉴别调味品 (酱油、 醋等)蛋白质,氨基酸总量,总糖,还原糖,氯化

近红外光谱仪原理介绍

  近红外光(Near Infrared,NIR)是介于可见光(VIS)和中红外光(MIR)之间的电磁波, ASTM 定义的近红外光谱区的波长范围为 780~2526nm (12820~3959cm1),习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)

红外光谱仪主要检测什么

有机物的特征官能团,分子结构和化学组成。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路

近红外光谱仪的简介

  近红外光谱技术(NIR)是 90 年代以来发展最快、最引人注目的分析技术之一。随着 NIR 分析方法的深入应用和发展,已逐渐得到大众的普遍接受和官方的认可。 1978年美国和加大就采用近红外法作为分析小麦蛋白质的标准方法, 1998 年美国材料试验学会制订了近红外光谱测定多元醇(聚亚安酯原材料)

傅立叶变换红外光谱仪原理

傅立叶变换红外光谱仪被称为第三代红外光谱仪,利用麦克尔逊干涉仪将两束光程差按一定速度变化的复色红外光相互干涉,形成干涉光,再与样品作用。探测器将得到的干涉信号送入红外光谱仪原理图到计算机进行傅立叶变化的数学处理,把干涉图还原成光谱图。

色散型近红外光谱仪器

色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的样品检测器元件进行投射或反射分析。该类型仪器的优点:使用扫描型近红外光谱仪可对

近红外光谱仪的优点

近红外光谱仪的优点      1、 分析速度快,一般分析一个样品的时间约为1分钟。      2、不需要对样品进行化学处理,分析步骤简单。      3、无消耗品,无环境污染,不破坏样品,经济。      4、一次测试能够同时得到多种成分或指标,甚至开发多种新指标而没有"通道"限制。      5、

红外光谱仪都有哪些特点?

红外光谱仪产品都有哪些特点?1、高稳定性采用动镜动态准直技术,高达130000次/秒实时动态调整,确保样品检测具有更出色的重复性、长期稳定性和光谱峰形。2、高分辨率 高分辨率可达0.5cm-1,大的满足了用户不同情况下的样品测试需要。3、采用平面反射镜,克服了立体角镜补偿系统干涉仪的“光谱失真”现象

红外光谱仪的日常维护

 红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。     在日常中使用中的维护保养    1、测定时实验室的温度应在15——30℃,相对湿度应在65%以下,所用电源应配备有稳压装置和接地线。因要严格

傅立叶红外光谱仪仪器操作

     1.样品准备(固体样品)    取样品约0.5mg在红外烤灯下充分研磨,再加入干燥KBr粉末约50mg,继续研磨至混合均匀。    2.模具准备    将干燥器中保存的简易模具取出,确认模具洁净。若其表面不洁净,可用棉花沾少许无水乙醇轻轻擦拭(绝对不可用力,以免模具表面被划伤),然后在红外

红外光谱仪有哪些特点?

  1、 只需三个分束器即可覆盖从紫外到远红外的区段;  2、 ZL干涉仪,连续动态调整,稳定性极高;  3、 可实现LC/FTIR、TGA/FTIR、GC/FTIR等技术联用;  4、 智能附件即插即用,自动识别,仪器参数自动调整;  5、 光学台一体化设计,主部件对针定位,无需调整。

红外吸收光谱仪的结构

  光源  红外光源应是能够发射高强度的连续红外光的物体。常用的有以下光源名称适用波长范围/cm-1说明能斯特(Nernst))灯5000-400ZrO2 ,THO2等烧结而成碘钨灯10000-5000硅碳灯5000-200FTIR,需用水冷或风冷炽热镍铬丝圈5000-200风冷高压汞灯

红外光谱仪的基本结构

  1.光源  光源能发射出稳定、高强度、连续波长的红外光,通常使用能斯特(Nernst)灯、碳化硅或涂有稀土化合物的镍铬旋状灯丝。  2.干涉仪  迈克耳孙(Michelson)干涉仪的作用是将复色光变为干涉光。中红外干涉仪中的分束器主要是由溴化钾材料制成的;近红外分束器一般以石英和CaF2为材料

如何选择近红外光谱仪

    初从事近红外光谱分析的人员常常会提出这样的问题:什么样的近红外光谱仪器最好?如何选择一台合适的近红外光谱仪器?实际上,“最好”仪器的定义是很难确定的,“最好”的仪器也是不存在的。因为对某一特定的仪器所提出的各项要求是随着所需要解决的具体问题的不同而有所差异的。为了帮助使用者根据特定的需要选择

红外光谱仪主要检测什么

有机物的特征官能团,分子结构和化学组成。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路