粒度仪原理

粒度仪分为三类: 纳米粒度仪,激光粒度仪和单颗粒光阻法粒度仪 粒度仪是用物理的方法测试固体颗粒的大小和分布的一种仪器。根据测试原理的不同分为沉降式粒度仪、沉降天平、激光粒度仪、光学颗粒计数器、电阻式颗粒计数器、颗粒图像分析仪等。 激光粒度仪 采用MIE散射原理的激光粒度仪由自主研发的会聚光傅立叶变换光路和无约束自由拟合是数据处理软件组成,可检测颗粒大小及分布,覆盖了毫米、微米、亚微米及纳米多个波段。 其测试颗粒大小及分布时采用的分散系统根据不同的测试要求分为湿法分散系统、干法分散系统和干湿一体分散系统。 当光线照射到颗粒上时会发生散射、衍射,其衍射、散射光强度均与粒子的大小有关。观测其光强度,可应用Fraunhofer 衍射理论和Mie 散射理论求得粒子径分布(激光衍射/ 散射法),使用Mie 散射理论进行计算。光入射到球形粒子时可产生三类光:第一类,在粒子表面、通过粒子内部、经粒子内表面的反射光;第二类,通过粒子......阅读全文

在线粒度仪的工作原理

采用全量程米氏散射理论,充分考虑到被测颗粒和分散介质的折射率等光学性质,根据大小不同的颗粒在各角度上散射光强的变化反演出颗粒群的粒度分布数据。  颗粒测试的数据计算一般分为无约束拟合反演和有约束拟合反演两种方法。有约束拟合反演在计算前假设颗粒群符合某种分布规律,再根据该规律反演出粒度分布。这种运算相

马尔文粒度仪工作原理

动态光散射法(DLS),有时称为准弹性光散射法(QELS),是一种成熟的非侵入技术,可测量亚微细颗粒范围内的分子与颗粒的粒度及粒度分布,使用最新技术,粒度可小于1nm。 动态光散射法的典型应用包括已分散或溶于液体的颗粒、乳剂或分子表征。 悬浮在溶液中的颗粒的布朗运动,造成散射光光强的波动。 分析光强

马尔文粒度仪工作原理

马尔文粒度仪属于纳米粒度仪工作原理:动态光散射法(DLS),有时称为准弹性光散射法(QELS),是一种成熟的非侵入技术,可测量亚微细颗粒范围内的分子与颗粒的粒度及粒度分布,使用最新技术,粒度可小于1nm。 动态光散射法的典型应用包括已分散或溶于液体的颗粒、乳剂或分子表征。 悬浮在溶液中的颗粒的布朗运

马尔文粒度仪工作原理

用mie散射原理。简单说:α=πd/λα为散射角度,d为颗粒直径,λ为激光波长。当激光波长确定,颗粒直径与光的散射角度相关。测出不同角度散射光的量,来确定不同直径颗粒的多少。

激光粒度仪的原理简介

激光粒度仪作为一种新型的粒度测试仪器,已经在粉体加工、应用与研究领域得到广泛的应用。它的特点是测试速度快、测试范围宽、重复性和真实性好、操作简便等等。激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以一束平行的激光在没有阻碍的无限空间中将会照

马尔文粒度仪工作原理

工作原理:动态光散射法(DLS),有时称为准弹性光散射法(QELS),是一种成熟的非侵入技术,可测量亚微细颗粒范围内的分子与颗粒的粒度及粒度分布,使用最新技术,粒度可小于1nm。 动态光散射法的典型应用包括已分散或溶于液体的颗粒、乳剂或分子表征。 悬浮在溶液中的颗粒的布朗运动,造成散射光光强的波动。

激光粒度仪的测试原理

当光束前进过程中遇到颗粒时,将发生散射现象,散射光与光束初始传播方向形成一个夹角θ,散射角的大小与颗粒的粒径相关,颗粒越大,产生的散射光的θ角就越小;颗粒越小,产生的散射光的θ角就越大。这样,测量不同角度上的散射光的强度,就可以得到样品的粒度分布了。激光粒度分析仪就是利用光的散射原理测量粉颗粒大小的

纳米粒度仪的原理

先进的测试原理:本仪器采用动态光散射原理和光子相关光谱技术,根据颗粒在液体中布朗运动的速度测定颗粒大小。具有原理先进、精度极高的特点,从而保证了测试结果的真实性和有效性。高灵敏度与信噪比:本仪器的探测器采用专业级高性能光电倍增管(PMT),对光子信号具有极高的灵敏度和信噪比,从而保证了测试结果的准确

沉降粒度仪简介和原理

  沉降粒度仪又称沉降天平,一般情况下是由高精度电子天平、沉降系统、数据处理软件等组成。是用物理的方法测试固体颗粒的大小和分布的一种仪器。  沉降粒度仪是根据斯托克斯定理制造。斯托克斯原理的基本内容是:粉尘颗粒在沉降过程中,发生颗粒分级,因而静止的沉降液的粘滞性对沉降颗粒起着摩擦阻力作用,按公式计算

几种粒度仪的原理比较

(1)激光粒度仪原理激光粒度仪一般是由激光器、富氏透镜、光电接收器阵列、信号转换与传输系统、样品分散系统、数据处理系统等组成。激光粒度仪的原理基于米氏散射理论和夫琅和费衍射理论,根据颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小。激光器发出的激光束,经滤波、扩束、准直后变成一束平行光,在该平行

马尔文粒度仪工作原理

马尔文粒度仪属于纳米粒度仪工作原理:动态光散射法(DLS),有时称为准弹性光散射法(QELS),是一种成熟的非侵入技术,可测量亚微细颗粒范围内的分子与颗粒的粒度及粒度分布,使用最新技术,粒度可小于1nm。 动态光散射法的典型应用包括已分散或溶于液体的颗粒、乳剂或分子表征。 悬浮在溶液中的颗粒的布朗运

激光粒度仪的原理介绍

   激光粒度仪的工作原理是基于光的散射理论与衍射理论。    当光束投射到仪器的分散系统时,可以发生光的吸收、反射、散射、衍射。    当入射光的频率与分子的固有频率相同时,发生光的吸收;    当入射光的波长小于分散粒子的尺寸时,则发生光的反射、衍射等;    若入射光的波长大于分散相粒

激光粒度仪原理详细介绍

  激光粒度仪是基于光衍射现象而设计的,当颗粒通过激光光束时,颗粒表面会衍射光,而衍射光的角度与颗粒的粒径成反向的变化关系,即大颗粒衍射光的角度小,小颗粒衍射光的角度大。换句话说,不同大小的颗粒在通过激光光束时其衍射光会落在不同的位置,位置信息反映颗粒大小;如果同样大的颗粒通过激光光束时其衍射光会落

马尔文粒度仪工作原理

马尔文粒度仪属于纳米粒度仪工作原理:动态光散射法(DLS),有时称为准弹性光散射法(QELS),是一种成熟的非侵入技术,可测量亚微细颗粒范围内的分子与颗粒的粒度及粒度分布,使用最新技术,粒度可小于1nm。 动态光散射法的典型应用包括已分散或溶于液体的颗粒、乳剂或分子表征。 悬浮在溶液中的颗粒的布朗运

湿法激光粒度仪测试原理

 湿法激光粒度仪是将被测微粉置入样品池中,通过液体分散(一般为水)利用He-Ne激光器测定液体中的颗粒的粒度。当颗粒流动通过样品窗时,产生散射光,样品窗后的探测器接受散射光信号,并通过分析确定光的能级。利用MIE理论反演计算出颗粒粒度大小和分布。测试范围能够达到0.1-300μm。  使用湿法激光粒

马尔文粒度仪工作原理

马尔文粒度仪属于纳米粒度仪工作原理:动态光散射法(DLS),有时称为准弹性光散射法(QELS),是一种成熟的非侵入技术,可测量亚微细颗粒范围内的分子与颗粒的粒度及粒度分布,使用最新技术,粒度可小于1nm。 动态光散射法的典型应用包括已分散或溶于液体的颗粒、乳剂或分子表征。 悬浮在溶液中的颗粒的布朗运

激光粒度仪及其原理介绍

激光粒度分析仪仪是根据光的散射原理测量粉颗粒大小的,是一种比较通用的粒度仪。其特点是测量的动态范围宽、测量速度快、操作方便,尤其适合测量粒度分布范围宽的粉体和液体雾滴。对粒度均匀的粉体,比如磨料微粉,要慎重选用。激光粒度仪集成了激光技术、现代光电技术、电子技术、精密机械和计算机技术,具有测量速度快、

纳米粒度仪工作原理

   纳米粒度仪的工作原理是利用动态光散射法(DLS),有时称为准弹性光散射法(QELS),是一种成熟的非侵入技术,可测量亚微细颗粒范围内的分子与颗粒的粒度及粒度分布,使用最新技术,粒度可小于1nm。 动态光散射法的典型应用包括已分散或溶于液体的颗粒、乳剂或分子表征。 悬浮在溶液中的颗粒的布朗运动,

激光粒度仪的工作原理

  颗粒的大小叫做粒度,一般以微米或纳米为单位,当光束遇到颗粒阻挡时,一部分光将发生散射现象,如下图。散射光的传播方向将与主光束的传播方向形成一个夹角θ。散射理论和实验结果都告诉我们,散射角θ的大小与颗粒的大小有关,颗粒越大,产生的散射光的θ角就越小;颗粒越小,产生的散射光的θ角就越大。在图8中,散

湿法激光粒度仪的原理

  湿法激光粒度仪理论上采用全量程米氏散射原理;    结构上采用单一光源、单一镜头和大角度的非均匀交叉的三维扇形探测器阵列;    避免了多光源、多镜头带来的数据多重性误差,保证了仪器宽量程测试范围以及测试结果的准确性和重复性。    湿法激光粒度仪采用湿法分散,可用蒸馏水、纯净水和酒精等液

激光粒度仪的主要原理

激光法:  激光粒度仪作为一种新型的粒度测试仪器,已经在粉体加工、应用与研究领域得到广泛的应用。它的特点是测试速度快、测试范围宽、重复性和真实性好、操作简便等等。  (1) 激光法的粒度测试原理:  激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向

马尔文粒度仪工作原理

马尔文粒度仪属于纳米粒度仪工作原理:动态光散射法(DLS),有时称为准弹性光散射法(QELS),是一种成熟的非侵入技术,可测量亚微细颗粒范围内的分子与颗粒的粒度及粒度分布,使用最新技术,粒度可小于1nm。 动态光散射法的典型应用包括已分散或溶于液体的颗粒、乳剂或分子表征。 悬浮在溶液中的颗粒的布

激光粒度仪的工作原理分析

  激光粒度仪是通过测量颗粒群的衍射光谱经计算机处理来分析其颗粒分布的。它可用来测量各种固态颗粒、雾滴、气泡及任何两相悬浮颗粒状物质的粒度分布、测量运动颗粒群的粒径分布。   激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以一束平行的激光

激光粒度仪的分类-及原理

  主要分类  纳米激光粒度仪  采用动态光散射原理技术和光子相关光谱技术,因颗粒在悬浮液中做布朗运动,使得光强随时间产生脉动,领用数字相关器技术处理脉冲信号,得到颗粒运动的扩散信息,利用Stokes-Einstein方程计算得出颗粒粒径大小及分布。  喷雾激光粒度仪  采用Mie氏散射原理和典型的

粒度分析仪的工作原理

1.全量程米氏散射理论 winner 系列激光粒度分析采用全量程米氏散射理论,充分考虑了分散介质和被测颗粒的折射率,结合ZL的测量装置,根据大小不同的颗粒在各角度上散射光强的变化来反演出颗粒群的粒度大小和粒度分布规律;2.激光粒度分析仪采用独创的无约束拟合反演方法、频谱放大技术,数据处理后可以获得更

纳米粒度仪原理及应用

动态光散射Dynamic Light Scattering (DLS),也称光子相关光谱Photon Correlation Spectroscopy (PCS) ,准弹性光散射quasi-elastic scattering,测量光强的波动随时间的变化。动态光散射技术测量粒子粒径,具有准确、快速、

激光粒度仪测试原理是什么?

  激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以一束平行的激光在没有阻碍的无限空间中将会照射到无限远的地方,并且在传播过程中很少有发散的现象。  当光束遇到颗粒阻挡时,一部分光将发生散射现象。散射光的传播方向将与主光束的传播方向形成一个

激光粒度仪测试原理和特点

 激光粒度仪测试原理和特点    激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的仪器,被广泛用用户建材、化工、冶金、能源、食品、电子、地质、军工、航空航天、机械、高校、实验室、研究机构等领域中。今天小编主要来介绍一下激光粒度仪测试原理和特点,希望可以帮助用户更好的应用产品。激光粒度仪

沉降式粒度仪的测试原理

根据斯托克斯定理,粉尘颗粒在沉降过程中,发生颗粒分级,因而静止的沉降液的粘滞性对沉降颗粒起着摩擦阻力作用,按公式计算:r =    9η/ [2 g (γk –γt )] ·  (H / t)式中:r = 颗粒半径           cmη= 沉降液粘度       泊,即 克/厘米·秒γk= 颗

纳米粒度仪原理及测试

纳米粒度仪是用物理的方法测试固体颗粒的大小和分布的一种仪器,采用数字相关器的纳米激光粒度仪,其采用高速数字相关器和高性能光电倍增管作为核心器件,具有操作简便、测试快捷、高分辨、高重复及测试准确等特点,是纳米颗粒粒度测试的首选产品。广泛应用于化工、电子、电池材料、造纸、冶金、陶瓷、建材、化妆品、磨料、