光合作用测量技术、叶绿素荧光技术、无人机遥感技术综...
光合作用测量技术、叶绿素荧光技术、无人机遥感技术综合应用案例 上图左为LCpro T,右为其更轻便的姊妹款LCi T新一代LCpro T特点如下更轻——主机和手柄总重量不到5千克GPS——野外随时随地记录经度、纬度、海拔数据续航——新型锂离子电池续航能力最大可达16小时屏幕——触摸屏以及强光下的优异表现控制——光照、温度、湿度、CO2四因子梯度控制叶室——选配宽叶室、窄叶室、针叶室、拟南芥叶室、冠层测量室、土壤呼吸室等LCPro-T为智能型便携式光合作用测量仪,用以测量植物叶片的光合速率、蒸腾速率、气孔导度等与植物光合作用相关的参数。仪器应用IRGA(红外气体分析)CO2分析模块和双激光调谐快速响应水蒸气传感器,通过人工光源、CO2控制单元和温度控制单元精确调控环境条件,从而测定光强、CO2浓度和温度对植物光合系统的影响。本仪器具有广泛的适用性,可在高湿度、高尘埃等恶劣环境中使用。测量参数包括光合速率、蒸腾速率、胞间C......阅读全文
手持式叶绿素荧光仪应用中的优势
叶绿素a荧光是研究各种逆境胁迫(干旱、高温、低温、营养缺失、污染、病害等)对植物影响,以及对各种水生植物、大型海藻、珊瑚等进行生理生态测量的强大工具。叶绿素a荧光不仅能反映光能吸收、激发能传递和光化学反应等光合作用的原初反应过程,而且与电子传递、质子梯度的建立及ATP合成和CO2固定等过程有关。
叶绿素荧光成像应用于茶树育种与生理分析
茶,是中华民族的举国之饮,茶文化源远流长,自远古时期,先人就已发现并利用茶树。我国是茶叶的主要产区,随着茶叶在国内及上的持续风靡,茶叶市场巨大,已成为中国的重要产值来源。茶叶产业链中茶树育种、种植栽培是关键一环,决定着茶叶的品质与产量。温度、水分、光照等因素对茶树表型的影响是茶树遗传育种与良种良方研
作物水分胁迫测量研究
在全球变暖与水资源枯竭的背景下,作物水分有效利用与水分胁迫成为作物表型分析、遗传育种、灌溉管理等重要的研究课题。易科泰生态技术公司提供作物水分胁迫研究全面技术方案,包括光合作用测量与叶绿素荧光技术、Thermo-RGB技术及CWSI成像技术等。光合作用测量与叶绿素荧光技术:有关仪器技术包括英国ADC
基于无人机高光谱技术的烟草生化指标分析研究
引言 成像技术和光谱技术是传统的光学技术的两个重要方向,成像技术能够获得物体的影像,得到其空间信息;光谱技术能够得到物体的光学信息,进而研究其物质属性。20世纪70年代以前,成像技术和光谱技术是相互独立的学科,随着遥感技术的发展,成像光谱技术迅速发展起来,它是一种快速、无损的检测技术,具
高通量小型植物光合表型测量系统的技术原理
叶绿素a荧光作为光合作用研究的探针,是研究各种逆境胁迫(干旱、高温、低温、营养缺失、污染、病害等)对植物影响的强大工具,亦被广泛用于筛选同一植物品种的不同基因型。叶绿素a荧光不仅能反映光能吸收、激发能传递和光化学反应等光合作用的原初反应过程,而且与电子传递、质子梯度的建立及ATP合成和CO2固定
叶绿素荧光仪原理及使用
Krause等(1980,1982)利用DCMU(敌草隆Diuron)阻断PSII受体测的原初电子受体QA到二级电子受体QB的电子传递,从而阻止了因光化学反应导致的光化学淬灭,为定量研究分析叶绿素荧光与光合作用的关系提供了可能。Bradbury等(1981,1984)利用将植物叶片快速曝光于强光下(
叶绿素荧光仪原理及使用
Krause等(1980,1982)利用DCMU(敌草隆Diuron)阻断PSII受体测的原初电子受体QA到二级电子受体QB的电子传递,从而阻止了因光化学反应导致的光化学淬灭,为定量研究分析叶绿素荧光与光合作用的关系提供了可能。Bradbury等(1981,1984)利用将植物叶片快速曝光于强光下(
叶绿素知识与叶绿素荧光测定的原理(上)
1983年,WALZ公司首席科学家,德国乌兹堡大学教授Ulrich Schreiber博士利用调制技术和饱和脉冲技术,设计制造了全世界第一台脉冲振幅(Pulse-Amplitude-Modulation,PAM)荧光仪——PAM-101/102/103。所谓调制技术,就是说用于激发荧光的测量光具有一
叶绿素知识与叶绿素荧光测定的原理(一)
1983年,WALZ公司首席科学家,德国乌兹堡大学教授Ulrich Schreiber博士利用调制技术和饱和脉冲技术,设计制造了全世界第一台脉冲振幅(Pulse-Amplitude-Modulation,PAM)荧光仪——PAM-101/102/103。所谓调制技术,就是说用于激发荧光的测量光具有一
叶绿素荧光仪之叶绿素荧光名词解释
叶绿素荧光,作为光合作用研究的探针,得到了广泛的研究和应用。叶绿素荧光不仅能反映光能吸收、激发能传递和光化学反应等光合作用的原初反应过程,而且与电子传递、质子梯度的建立及ATP合成和CO2固定等过程有关。几乎所有光合作用过程的变化均可通过叶绿素荧光反映出来,而荧光测定技术不需破碎细胞,不伤害生物
叶绿素荧光参数及定义
叶绿素荧光参数是一组用于描述植物光合作用机理和光合生理状况的变量或常数值,反映了植物“内在性 ”的特点 , 被视为是研究植物光合作用与环境关系的内在探针 。 为了统一叶绿素荧光参数名称, 在1990年召开的国际荧光研讨会上对上述的大部分参数给出了标准术语( standard nomenclatu
叶绿素和叶绿素的荧光区别
研究目的不同、测量方法不同。1、叶绿素的研究目的是判断植物的生长状态,而叶绿素荧光的目的是判断植物内的叶绿素含量,所以两者之间的区别是研究目的不同,可前往咨询。所以两者之间的区别是研究目的不同,可前往咨询。2、叶绿素的测量方法是肉眼测量,而叶绿素荧光的测量方法是仪器测量,所以两者之间的区别是测量方法
叶绿素和叶绿素的荧光区别
研究目的不同、测量方法不同。1、叶绿素的研究目的是判断植物的生长状态,而叶绿素荧光的目的是判断植物内的叶绿素含量,所以两者之间的区别是研究目的不同,可前往咨询。所以两者之间的区别是研究目的不同,可前往咨询。2、叶绿素的测量方法是肉眼测量,而叶绿素荧光的测量方法是仪器测量,所以两者之间的区别是测量方法
遥感技术在物联网发展下的演进
据麦姆斯咨询介绍,自1858年Gaspard Felix Tournachon开创性的航拍照片以来,遥感技术已经走过了漫长的发展道路。虽然遥感技术在不断进步,但在某些方面多年来仍然相对没有改变:数据采集的频率。现在,随着新的数据采集平台,更小、更高效的传感器以及云计算等技术的到来,遥感技术的重大创新
FluorCam叶绿素荧光成像与根系分析技术研究苹果盐碱胁迫
我国是苹果生产大国,土壤的质量对苹果产量起着至关重要的作用。然而现在土壤盐碱化严重,盐、碱胁迫影响着苹果种植生产。例如,黄土高原是我国面积最大、最适宜种植苹果的地区,而该地区土壤碱化却不利于苹果的生长。目前关于苹果生长过程中盐胁迫的研究较多,对苹果应对碱胁迫的研究却较少。γ-氨基丁酸(GABA)是一
应用FRR叶绿素荧光诱导技术估算有效光反应中心含量
PSII可与PSI协同从水中获取电子生成还原体、驱动光化学反应和植物营养循环。因此有效PSII光反应中心([PSII]active)的含量可作为植物生产力评估的基础因子,同时也是评估植物光合速率、研究植物胁迫响应的关键。而对于液体样品,[PSII]active含量同样是评估水生生物光合作用速率以及分
叶绿素荧光参数
叶绿素荧光参数是用来评估植物光合作用效率和生理状态的重要指标。通过测量叶片的荧光辐射,可以获取多个参数,如最大光化学效率(Fv/Fm)、有效光化学效率(Fv'/Fm')、非光化学淬灭系数(qN)等。Fv/Fm反映光合机构的整体健康状况,Fv'/Fm'则考察光合反应中光
叶绿素荧光参数
叶绿素荧光参数是用来评估植物光合作用效率和生理状态的重要指标。通过测量叶片的荧光辐射,可以获取多个参数,如最大光化学效率(Fv/Fm)、有效光化学效率(Fv'/Fm')、非光化学淬灭系数(qN)等。Fv/Fm反映光合机构的整体健康状况,Fv'/Fm'则考察光合反应中光
叶绿素荧光参数
叶绿素荧光参数是用来评估植物光合作用效率和生理状态的重要指标。通过测量叶片的荧光辐射,可以获取多个参数,如最大光化学效率(Fv/Fm)、有效光化学效率(Fv'/Fm')、非光化学淬灭系数(qN)等。Fv/Fm反映光合机构的整体健康状况,Fv'/Fm'则考察光合反应中光
2010年北京易科泰上海叶绿素荧光技术及应用研讨会通知
20世纪80年代,Quick等(1984)发明了脉冲调制技术(PAM)测量叶绿素荧光,从而催生了美国Optics及德国Walz等的脉冲调制荧光仪产品。进入90年代,双调制荧光仪(Trtilek等,1997)的研制成功,使荧光测量时间解析度(采样频率)达到100ns,从而可以进行精细的O
SpectraPen/PolyPen手持式光谱仪应用—病害无人机普查与特...
SpectraPen/PolyPen手持式光谱仪应用—病害无人机普查与特性研究病害是植物尤其作物最主要的胁迫因素之一。病害会造成农作物产量的严重损失、加剧食品安全风险,对生态系统完整性和稳定性也有显著的影响。现在,在农田、森林、草原等病害早期检测与普查中,一个非常重要的研究工具就是搭载了高光谱相机和
关于叶绿素的光合作用介绍
光合作用是指绿色植物通过叶绿体,把光能用二氧化碳和水转化成化学能,储存在有机物中,并且释放出氧的过程。光合作用的第一步是光能被叶绿素吸收并将叶绿素离子化。产生的化学能被暂时储存在三磷酸腺苷(ATP)中,并最终将二氧化碳和水转化为碳水化合物和氧气。 1864年,德国科学家萨克斯做了这样一个实验:
我国在海洋生物要素测量关键技术方法研究中取得进展
近期,中国科学院合肥物质科学研究院安徽光学精密机械研究所研究员赵南京承担的国家重点研发计划“海洋环境安全保障”重点专项“海洋生物化学常规要素在线监测仪器研制及产业化”项目在“海洋生物要素测量关键技术方法”研究方面取得新进展。 在海水叶绿素在线测量方面,科研人员研究出基于三维荧光光谱方法的海洋浮
叶绿素计的技术参数
功能特点测量时间快速 LCD直接显示叶绿素值 仪器小巧便携,可随身携带到野外测量 测量样品各种植物叶片 测量面积Ф10mm 测量方式2波长光学浓度差方式 感应器硅半导体光电二极管 显示方式测量值:3位数液晶显示 测量次数:2位数液晶显示 测量的最小间隔小于2秒 测量范围0.0
荧光抗体技术技术特点
本法较其他鉴定细菌的血清学方法速度快、操作简单、敏感性高,但在细菌实验诊断中,一般只能作为一种补充手段使用,而不能代替常规诊断。荧光抗体染色法对脑膜炎奈氏菌、痢疾志贺菌、霍乱弧菌、布氏杆菌和炭疽杆菌等的实验诊断有较好效果。
OJIP、QA再氧化、Kautsky分析Cd对拟南芥光合作用的影响
叶绿素荧光成像技术—OJIP、QA再氧化、Kautsky分析Cd对拟南芥光合作用的影响叶绿素荧光动力学(Kautsky诱导效应)主要用于区分光化学非光化学反应,获得光化学效率等参数。而快速叶绿素荧光动力学(OJIP)则主要用以获取与光系统(PS)尤其是光系统(PSⅡ)和电子传递元件的结构和功能有关的
光反应和暗反应的测量仪器
光合仪:气体交换原理,利用红外气体分析器(InfraRed Gas Analyzer IRGA)测量流经叶片前后CO2和H2O的浓度变化,分析叶片与环境发生的气体交换,用固定了多少CO2来表征光合作用的能力。常用的参数是净光合速率,蒸腾速率,气孔导度,胞间二氧化碳浓度等。气体交换是非常经典的光合
便携式光合荧光测量系统技术指标
便携式光合荧光测量系统是一种用于生物学、农学、林学领域的科学仪器,于2016年1月1日启用。 1、高精度4通道绝对开路式非扩散红外气体分析器(CO2和H2O各2个通道。 2、可控制叶室跟踪环境温度,可设定恒定叶室或叶片温度。 3、整合式干湿双重H2O控制系统和整合式CO2控制系统。 4、
FluorCam叶绿素荧光成像技术在药用植物研究中的应用2
二、药用植物加工与品质鉴定1. 最佳干燥温度的筛选 研究对象 功效 牛至 解表,理气,清暑,利湿 米兰理工大学研究了牛至叶片在不同温度下(50°
FluorCam叶绿素荧光成像技术应用于果实品质检测与光合...
FluorCam叶绿素荧光成像技术应用于果实品质检测与光合生理研究 叶绿素荧光成像技术是在通过叶绿素荧光测量技术检测各光合作用指标的同时,对样品进行二维成像,以图像的形式量化并显示整个观测目标的光合生理状态,能直观体现目标整体的光合异质性,测量目标涵盖叶绿体、单个细胞、微藻到叶片、果实、花