原子荧光光谱仪的常见故障和自查

仪器故障自查程序: 1.检查电源; 2.检查载气; 3.检查元素等; 4.检查蠕动泵; 5.检查管路; 6.检查原子化器; 7.检查软件系统。 系统故障问题 多指计算机硬件系统故障 1.故障表现:通讯失败,开机后单片机与计算机不能连接,不能进入操作软件 故障原因:仪器与计算机通信故障,计算机串口设置错,或仪器软件与计算机操作系统不兼容,或电路硬件故障,或机械故障 解决办法:检查通信线路正确设置端口,或检查仪器软件是否与计算机操作系统兼容,或检查机器电路主板(需厂家专业技术人员) 2.故障表现:仪器不能自动识别元素灯 故障原因:灯接口未接好,或灯已坏 解决办法:检查或更换元素灯,检查机器电路主板 3.故障表现:测量过程中仪器停止运行,并提示错误 故障原因:样品浓度过高,或仪器软件与计算机操作系统不兼容,或硬件坏,或元素灯坏 解决办法:稀释样品,或更换操作系统,或更换维修硬件 元素灯问题 1.......阅读全文

原子荧光光谱仪分类

原子荧光光谱仪分类有多种。1、按原子化方式可分:氢化物发生原子荧光光谱仪和冷原子荧光光谱仪等。2、按原子化器可分:石英炉原子荧光光谱仪和汞蒸气原子荧光光谱仪等。3、按原子化温度可分:高温原子荧光光谱仪和低温原子荧光光谱仪。4、按原子化能量可分:热原子荧光光谱仪和冷原子荧光光谱仪。5、按入射光束数可分

原子荧光光谱仪简介

原子荧光光谱仪是什么?原子荧光光谱仪的应用 原子荧光光谱仪是什么呢?原子荧光光谱仪是一种常用的检测仪器,是通过测量待待测元素的原子蒸汽在辐射能激发下产生的荧光发射强度来测定元素含量的,产品在多个行业中都有一定的应用。原子荧光光谱仪的应用利用原子荧光谱线的波长和强度进行物质的定性与定量分析的方法。原子

原子荧光光谱仪构造

仪器构造原子荧光分析仪分非色散型原子荧光分析仪与色散型原子荧光分析仪。这两类仪器的结构基本相似,差别在于单色器部分。两类仪器的光路图如右图所示:原子荧光光谱仪仪器构造原理图光源可用连续光源或锐线光源。常用的连续光源是氙弧灯,常用的锐线光源是高强度空心阴极灯、无极放电灯、激光等。连续光源稳定,操作简便

原子荧光光谱仪和原子荧光光度计

原子荧光光谱仪及原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。

原子荧光光谱仪的分析方法

物质吸收电磁辐射后受到激发,受激原子或分子以辐射去活化,再发射波长与激发辐射波长相同或不同的辐射。当激发光源停止辐照试样之后,再发射过程立即停止,这种再发射的光称为荧光;若激发光源停止辐照试样之后,再发射过程还延续一段时间,这种再发射的光称为磷光。荧光和磷光都是光致发光。原子荧光光谱分析法具有很高的

关于原子荧光光谱仪的简介

  原子荧光光谱仪利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。

原子荧光光谱仪的分析方法

  物质吸收电磁辐射后受到激发,受激原子或分子以辐射去活化,再发射波长与激发辐射波长相同或不同的辐射。当激发光源停止辐照试样之后,再发射过程立即停止,这种再发射的光称为荧光;若激发光源停止辐照试样之后,再发射过程还延续一段时间,这种再发射的光称为磷光。荧光和磷光都是光致发光。  原子荧光光谱分析法具

原子荧光光谱仪的分析方法

物质吸收电磁辐射后受到激发,受激原子或分子以辐射去活化,再发射波长与激发辐射波长相同或不同的辐射。当激发光源停止辐照试样之后,再发射过程立即停止,这种再发射的光称为荧光;若激发光源停止辐照试样之后,再发射过程还延续一段时间,这种再发射的光称为磷光。荧光和磷光都是光致发光。原子荧光光谱分析法具有很高的

原子荧光光谱仪的构造原理

  原子荧光光谱法从机理看来属于发射光谱分析,但所用仪器及操作技术与原子吸收光谱法相似,昨天我们分享了原子吸收分光光度计的构造原理,今天我们主要分享一下原子荧光分光度计的构造原理。  原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。根据荧光产生机理的不同,原子荧光的类

原子荧光光谱仪的应用概述

  根据荧光谱线的波长可以进行定性分析。在一定实验条件下,荧光强度与被测元素的浓度成正比。据此可以进行定量分析。  原子荧光光谱仪分为色散型和非色散型两类。两类仪器的结构基本相似,差别在于非色散仪器不用单色器。色散型仪器由辐射光源、单色器、原子化器、检测器、显示和记录装置组成。辐射光源用来激发原子使

原子荧光光谱仪的基本介绍

利用原子荧光谱线的波长和强度进行物质的定性与定量分析的方法。原子蒸气吸收特征波长的辐射之后,原子激发到高能级,激发态原子接着以辐射方式去活化,由高能级跃迁到较低能级的过程中所发射的光称为原子荧光。当激发光源停止照射之后,发射荧光的过程随即停止。 原子荧光可分为 3类:即共振荧光、非共振荧光和敏化荧光

原子荧光光谱仪的相关介绍

  原子荧光光谱分析是一种灵敏度高、分离效果好,分析速度快的成熟分析技术,本文从原子荧光光谱仪操作者的角度,介绍了原子荧光光谱仪的使用与注意事项,原子荧光光谱仪工作环境的要求,仪器的特点、性能以及样品前处理要求,原子荧光光谱仪维护的各种注意事项等等,对原子荧光光谱仪的使用者和管理者具有一定的参考价值

原子荧光光谱仪的构造原理

       原子荧光光谱法从机理看来属于发射光谱分析,但所用仪器及操作技术与原子吸收光谱法相近,上篇文章我们介绍论了原子吸收分光光度计的构造原理,这篇我们主要介绍原子荧光分光度计。  原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。根据荧光产生机理的不同,原子荧光的

原子荧光光谱仪的应用特点

   AF-7500原子荧光光谱仪AFS是我公司依靠自身的技术优势,自主开发成功的新一代原子荧光光度计。仪器综合了当前现代科技、计算机、光电技术的成果,为广大用户提供了一个简捷、高效、安全和可靠的分析手段。  本仪器具有极低的检出限、极宽的线性范围。多项主要技术指标达到了目前国外水平。  用途广泛,

原子荧光光谱仪的基本介绍

原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。

原子荧光光谱仪的构造原理

原子荧光光谱法从机理看来属于发射光谱分析,但所用仪器及操作技术与原子吸收光谱法相近,上篇文章我们介绍论了原子吸收分光光度计的构造原理,这篇我们主要介绍原子荧光分光度计。  原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。根据荧光产生机理的不同,原子荧光的类型达到十余种

原子荧光光谱仪的操作步骤

  原子荧光光谱法具有原子吸收和原子发射光谱两种技术的优势,克服了单一技术在某些方面的缺点,对一些元素具有分析灵敏度高、干扰少、线性范围宽、可多元素同时分析等特点,这些优点使得该方法在冶金、地质、石油、农业、生物医学、地球化学、材料科学、环境科学等各个领域内获得了相当广泛的应用。   原子荧光光谱仪

原子荧光光谱仪的样品准备

  (1)样品分析一般要求  原子荧光光谱仪分析的对象是以离子态存在的砷(As)、硒(Se)、锗(Ge)、碲(Te) 等及汞(Hg)原子,样品必须是水溶液或能溶于酸。  (2)固体样品  检测砷(As)、硒(Se)、碲(Te)、汞(Hg),介质为盐酸(5% ,v/v);  检测锗(Ge),介质为硫酸

原子荧光光谱仪的构造原理

原子荧光光谱法从机理看来属于发射光谱分析,但所用仪器及操作技术与原子吸收光谱法相近,上篇文章我们介绍论了原子吸收分光光度计的构造原理,这篇我们主要介绍原子荧光分光度计。 原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。根据荧光产生机理的不同,原子荧光的类型达到十余

原子荧光光谱仪的工作原理

  待测元素的溶液与硼氢化钠(钾)混合,在酸性条件下,砷、硒、锑、铋、锡、碲、铅、锗等可生成氢化物气体(如硒化氢等),汞可生成气态原子态汞;镉、锌可生成气态组分,从溶液中逸出,通过与氩气、氢气混合后进入到原子化器中(并被点燃),气体组分在高温下分解并转化为基态的原子蒸汽,通过该元素的空心阴极灯产生的

【科普】原子荧光光谱仪的结构

  原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。  原子荧光光谱仪组成结

原子荧光光谱仪和原子吸收光谱仪的区别

原子荧光光谱法具有原子吸收和原子发射光谱两种技术的优势,克服了单一技术在某些方面的缺点,对一些元素具有分析灵敏度高、干扰少、线性范围宽、可多元素同时分析等特点,这些优点使得该方法在冶金、地质、石油、农业、生物医学、地球化学、材料科学、环境科学等各个领域内获得了相当广泛的应用。原子吸收光谱仪是从光源辐

原子吸收光谱仪和原子荧光光谱仪的区别

原子吸收光谱法是根据蒸气相中被测元素的基态原子对其原子共振辐射的吸收强度来测定试样中被测元素的含量。 其优点与不足:   检出限低,灵敏度高。火焰原子吸收法的检出限可达到ppb级,石墨炉原子吸收法的检出限可达到10-10-10-14g。  分析精度好。火焰原子吸收法测定中等和高含量元素的相对标

原子吸收光谱仪和原子荧光光谱仪的区别

两种仪器的区别:1、机构光路不同:原子吸收光源、原子化器和检测器在一条光路上;原子荧光为垂直光路。2、原理不同:原子吸收利用原子的特征吸收光谱;原子荧光则利用原子的激发-跃迁光谱(荧光)。 3、灵敏度不同:对于原子吸收,增加光源强度同时会增加背景吸收,而原子荧光信号强度与激发光源强度成正比,故灵敏度

原子荧光光谱仪和原子吸收光谱仪的区别

1、光路不同:原子吸收光源、原子化器和检测器在一条光路上;原子荧光为垂直光路。 2、原理不同:原子吸收利用原子的特征吸收光谱;原子荧光则利用原子的激发-跃迁光谱 (荧光)。  3、灵敏度不同:对于原子吸收,增加光源强度同时会增加背景吸收,而原子荧光信号强度 与激发光源强度成正比,故灵敏度可以

原子吸收光谱仪和原子荧光光谱仪的区别

原子荧光光谱法具有原子吸收和原子发射光谱两种技术的优势,克服了单一技术在某些方面的缺点,对一些元素具有分析灵敏度高、干扰少、线性范围宽、可多元素同时分析等特点,这些优点使得该方法在冶金、地质、石油、农业、生物医学、地球化学、材料科学、环境科学等各个领域内获得了相当广泛的应用。原子吸收光谱仪是从光源辐

原子荧光光谱仪和原子吸收光谱仪的区别

原子荧光光谱法具有原子吸收和原子发射光谱两种技术的优势,克服了单一技术在某些方面的缺点,对一些元素具有分析灵敏度高、干扰少、线性范围宽、可多元素同时分析等特点,这些优点使得该方法在冶金、地质、石油、农业、生物医学、地球化学、材料科学、环境科学等各个领域内获得了相当广泛的应用。原子吸收光谱仪是从光源辐

原子荧光光谱仪和原子吸收光谱仪的区别

1、光路不同:原子吸收光源、原子化器和检测器在一条光路上;原子荧光为垂直光路。2、原理不同:原子吸收利用原子的特征吸收光谱;原子荧光则利用原子的激发-跃迁光谱(荧光)。3、灵敏度不同:对于原子吸收,增加光源强度同时会增加背景吸收,而原子荧光信号强度与激发光源强度成正比,故灵敏度可以极大提高。4、使用

如何选购原子荧光光谱仪

根据原子荧光原理制作的用来进行元素定量分析的光谱仪器被称为原子荧光光谱仪,又称作原子荧光光度计。选购原子荧光光谱仪首先应该判断一台原子荧光光谱仪的级别和档次,其判断方法如下:判断一台原子荧光光谱仪的级别。技术指标是决定一台原子荧光光谱仪级别高低的根本。技术指标越好,其级别高。在同等级别的基础上要衡 

原子荧光光谱仪联用技术

  离子色谱-蒸气发生/原子荧光及高效液相色谱-蒸气发生/原子荧光联用技术应用于砷、汞元素形态分析的新进展。  国际上对食品和环境科学中有毒、有害有机污染物高度重视,且在有机污染物的监测分析有了很大发展。人们已越来越认识到砷、汞、硒、铅、镉等元素不同化合物的形态其作用和毒性存在巨大的差异。例如砷是一