频谱分析仪原理结构框图

频谱分析仪是常用的电子测量仪器之一,他的功能是分辨输入信号中各个频率成分并测量各个频率成分的频率和功率。下面看一下传统频谱分析仪的原理和现代频谱分析仪(或称为信号分析仪)的发展。图1是传统的扫频式频谱分析仪的结构框图。图1 传统扫频式频谱分析仪的结构框图输入信号进入频谱分析仪后与本振混频,当混频产物等于中频时,这个信号送到检波器,检波器输出视频信号,通过放大、采样、数字化后决定CRT显示信号的垂直电平。扫描振荡器控制CRT显示的水平频率轴和本地振荡器调谐同步,它同时驱动水平CRT偏转和调谐本振。频谱分析仪依靠中频滤波器分辨各个频率成分,检波器测量信号功率,依靠本振和显示横坐标的对应关系得到信号频率值。这种扫描-调谐分析仪的工作原理正象你家中的调幅AM接收机,只是调幅接收机的本振不是扫描的,而是用刻度旋钮人工进行调谐,另外不是用显示器显示信息而是用扬声器播放声音。图2是最新的安捷伦MXA系列频谱分析仪的结构框......阅读全文

频谱分析仪的匹配因素

  量测设备的输入阻抗有时无法匹配待测件连接线特性阻抗,根据电磁  理论,阻抗匹配时,输出功率最大且没有其它不良的副作用,而阻抗不匹  配,将造成信号反射,影响系统频率的稳定与造成信号功率的损失。信号  在传输在线往返传送将产生驻波及噪声,进而影响接收端的信号质量与量  测值的准确性。量测设备输入阻

最常用的频谱分析仪

  最常用的频谱分析仪是扫瞄调谐频谱分析仪,可调变的本地振荡器经与CRT 同步的扫瞄产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大、滤波与检波传送到CRT 的垂直方向板,因此在CRT 的纵轴显示信号振幅与频率的对应关系,信号流程架构如图1.3 所示。  影

频谱分析仪原理结构框图

频谱分析仪是常用的电子测量仪器之一,他的功能是分辨输入信号中各个频率成分并测量各个频率成分的频率和功率。下面看一下传统频谱分析仪的原理和现代频谱分析仪(或称为信号分析仪)的发展。图1是传统的扫频式频谱分析仪的结构框图。图1  传统扫频式频谱分析仪的结构框图输入信号进入频谱分析仪后与本振混频,当混频产

频谱分析仪的操作简介

  硬键、软键和旋钮  这是仪器的基本操作手段。  1.三个大硬键和一个大旋钮:大旋钮的功能由三个大硬键设定。按一下频率硬键,则旋钮可以微调仪器显示的中心频率;按一下扫描宽度硬键,则旋钮可以调节仪器扫描的频率宽度;按一下幅度硬键,则旋钮可以调节信号幅度。旋动旋钮时,中心频率、扫描宽度(起始、终止频率

教你如何选择频谱分析仪

  频谱分析仪是一种多用途的电子测量仪器,它主要是测量信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数。长期的使用频谱分析仪,会由于种种因素出现故障的发生。那么接下来跟着日图来选择频谱分析仪。   1.怎样设置才能获得频谱仪最佳的灵敏度,以方便观测小信号  首先根据被测小信号的大小设置相应

频谱分析仪技术参数

频谱分析仪  输入频率范围:100kHz ~ 3GHz 最大输入电平:+30dBm(1W)  幅度准确度:±1.0dB 分辨率带宽(RBW):100Hz ~1MHz  可视带宽(VBW) :1Hz ~ 1MHz 动态范围: > 85dB  输入衰减:0~55dB(步长5dB) 单边带相位噪声:-95

快速傅立叶变换频谱分析仪

  快速傅立叶变换可用来确定时域信号的频谱。信号必须在时域中被数字化,然后执行FFT算法来求出频谱。一般FFT分析仪的结构是:输入信号首先通过一个可变衰减器,以提供不同的测量范围,然后信号经过低通滤波器,除去处于仪器频率范围之外的不希望的高频分量,再对波形进行取样即模拟到数字转换,转换为数字形式后,

频谱分析仪的工作原理

  频谱分析仪架构犹如时域用途的示波器,面板上布建许多功能控制按键,作为系统功能之调整与控制,实时频谱分析仪(Real-Time Spectrum Analyzer)与扫瞄调谐频谱分析仪(Sweep-Tuned Spectrum Analyzer)。实时频率分析仪的功能为在同一瞬间显示频域的信号振幅

频谱分析仪的噪声特性

  由于电阻的热敏效应,任何设备均具有噪声,频谱分析仪亦不例外,频谱分析仪的噪声,本质上是热噪声,属于随机性(Random),它能被放大与衰减,由于系随机性信号,两噪声的结合只有相加而无法产生相减的效果。在频带范围内也相当平坦,其频宽远大于设备内部电路的频宽,检测器检知的噪声值与设定的分辨率频宽(R

频谱分析仪的频率范围

  频谱分析仪进行正常工作的频率区间。现代频谱仪的频率范围能从低于1赫直至300吉赫。  分辨力  频谱分析仪在显示器上能够区分最邻近的两条谱线之间频率间隔的能力,是频谱分析仪最重要的技术指标。分辨力与滤波器型式、波形因数、带宽、本振稳定度、剩余调频和边带噪声等因素有关,扫频式频谱分析仪的分辨力还与

频谱分析仪的发展简介

  频谱分析仪是对无线电信号进行测量的必备手段,是从事电子产品研发、生产、检验的常用工具。因此,应用十分广泛,被称为工程师的射频万用表。  传统产品  传统的频谱分析仪的前端电路是一定带宽内可调谐的接收机,输入信号经变频器变频后由低通滤器输出,滤波输出作为垂直分量,频率作为水平分量,在示波器屏幕上绘

频谱分析仪现代产品简介

  基于快速傅里叶变换(FFT)的现代频谱分析仪,通过傅里叶运算将被测信号分解成分立的频率分量,达到与传统频谱分析仪同样的结果。这种新型的频谱分析仪采用数字方法直接由模拟/数字转换器(ADC)对输入信号取样,再经FFT处理后获得频谱分布图。  在这种频谱分析仪中,为获得良好的仪器线性度和高分辨率,对

频谱分析仪的测量机制

  1、 把被测信号与仪器内的基准频率、基准电平进行对比。因为许多测量的本质都是电平测试,如载波电平、A/V、频响、C/N、CSO、CTB、HM、CM以及s数字频道平均功率等。  2、 波形分析:通过107选件和相应的分析软件,对电视的行波形进行分析,从而测试视频指标。如DG、DP、CLDI、调制深

实时频谱分析仪的特性分析

  实时频谱分析仪普遍采用快速傅里叶变换(FFT)来实现频谱测量。FFT技术并不是实时频谱仪的ZL,其在传统的扫频式频谱仪上亦有所应用。但是实时频谱仪所采用的FFT技术与之相比有着许多不同之处,同时其测量方式和显示结果也有所不同:  高速测量:频谱仪分析仪的信号处理过程主要包括两步,即数据采样和信号

频谱分析仪的发展及分类

  发展  简介  频谱分析仪是对无线电信号进行测量的必备手段,是从事电子产品研发、生产、检验的常用工具。因此,应用十分广泛,被称为工程师的射频万用表。  传统产品  传统的频谱分析仪的前端电路是一定带宽内可调谐的接收机,输入信号经变频器变频后由低通滤器输出,滤波输出作为垂直分量,频率作为水平分量,

频谱分析仪的常见问题

  1、 测C/N、CSO:仪器提供两个方法:关断调制和不关断调制。不关断调制,要在被测频道的调制信号里插入静止测试行,启动仪器的选通功能,可以不中断正常播出。测CSO须预先在Setup中设置拍频位置。以便仪器在设置的频率上找拍频。  2、 测HUM、CM必须关掉调制(不关载波)。  3、 测CTB

Agilent-8563E频谱分析仪

Agilent 8563E 便携式微波频谱分析仪提供了以前在更大、更昂贵的台式分析仪中发现的测量能力和性能。该分析仪具有 9 kHz 至 26.5 GHz 的标准频率范围(从 2.75 GHz 至 26.5 GHz 预选),可选择低端频率覆盖范围至 30 Hz。8563E 将出色的相位噪声、灵敏度、

Keysight-8565EC频谱分析仪

8565EC 是便携式的彩色显示微波频谱分析仪,提供昂贵的更大台式分析仪才具备的测量能力和特性。您能用简单的同轴连接测量 30Hz 至 50GHz(在2.75GHz以上预选)的信号。8565EC 组合了的相噪、灵敏度、1Hz分辨率带宽、合成型调谐和宽动态范围,能适应各种环境条件的要求。它为使用数字调

实时式频谱分析仪的简介

  在存在被测信号的有限时间内提取信号的全部频谱信息进行分析并显示其结果的仪器主要用于分析持续时间很短的非重复性平稳随机过程和暂态过程,也能分析40兆赫以下的低频和极低频连续信号,能显示幅度和相位。傅里叶分析仪是实时式频谱分析仪,其基本工作原理是把被分析的模拟信号经模数变换电路变换成数字信号后,加到

HP-频谱分析仪8594E

HP 频谱分析仪8594E便携式频谱分析仪HP8594E的详细介绍*便于使用、可扩展的便谐式频谱分析仪*有各种范围的价格和性能可选择*用一个按钮即可进行FFT、TOI、ACP等测量*具有扩展的存储器和示迹存储功能*可选用窄分辨带宽*可提供定制的专用测试软件HP8594E系列频谱分析仪作用:HP859

扫频式频谱分析仪简介

  它是具有显示装置的扫频超外差接收机,主要用于连续信号和周期信号的频谱分析。它工作于声频直至亚毫米的波频段,只显示信号的幅度而不显示信号的相位。它的工作原理是:本地振荡器采用扫频振荡器,它的输出信号与被测信号中的各个频率分量在混频器内依次进行差频变换,所产生的中频信号通过窄带滤波器后再经放大和检波

频谱分析仪的使用及操作

  使用  图示测试仪  什么是频谱分析仪在频域内分析信号的图示测试仪。以图形方式显示信号幅度按频率的分布,即X轴表示频率,Y轴表示信号幅度。  原理  用窄带带通滤波器对信号进行选通。  主要功能  显示被测信号的频谱、幅度、频率。可以全景显示,也可以选定带宽测试。  测量机制  1.把被测信号与

频谱分析仪与场强仪

  就场强仪来说,它与天线关系非常密切,如果要求一定的测量精度,那么从式(1)就知,它直接与天线增益Ga有关,再则是天线的工作频率范围有关,这是最起码的要求,因此不能说随便找一根天线接在电平表上就行了。故在实践中,这种天线称之为测试天线,它有严格技术指标,如频率范围,天线增益以及阻抗、驻波比、前后比

安捷伦E4406A频谱分析仪

主要指标Span范围 : 10Hz至10MHz频率范围 : 7MHz至4GHz在无线测试领域,*的解调性能频谱波形和I/Q波形同时显示适用于各类发射机和直放站的测试Agilent E4406A是全功能的矢量信号分析仪,它能满足无线通信研发和制造工程师的测试需要,在WLAN测试、手机测试、基站测试、等

适用频谱分析仪的扫描探头

索引:如何使用和选择EMI故障诊断的近场探头?近场探头也是射频干扰探头。配合50Ω示波器、接收机、频谱分析仪进行电场和磁场辐射干扰测试!!!用于探测印刷电路板、元器件、集成电路和电磁干扰源产生的辐射发射。 一、概述:近场电磁干扰(EMI)测试是电磁兼容性 (EMC) 辐射发射预兼容测试中的一个重

安捷伦8565EC频谱分析仪

8565E 是安捷伦的 50 GHz 频谱分析仪。频谱分析仪测量已知和未知信号的频谱功率。频谱分析仪收集信息,例如输入信号与其频率相比的幅度。作为频率分析仪,频谱分析仪的主要用途是记录和分析电输入信号以及其他信号的频谱成分。8565E 将出色的相位噪声、灵敏度、1 Hz 分辨率带宽、合成调谐和宽动态

读取频谱分析仪的方法简介

  读取结果的方法:  1、 电平的读取:主要使用参考电平REF。仪器屏幕图形上最上边的一行水平线是参考电平线。该线表示的电平为参考电平,其数值和单位显示在屏幕左上角。参考电平的值可以改变:按AMPLITUDE硬键,旋转大旋钮就可以改变,数字随时显示出来。图形每格的分贝数dB/DIV显示在屏幕左上角

便携式频谱分析仪的特点

  频率范围9kHz-3GHz  分辨率带宽5Hz-3MHz、以1至10连续步进  具备频率测量、AM和FM解调、邻道功率测量、色谱图等多种测量功能  多窗口、局部缩放测量显示  多达5条迹线测量显示  8.4英寸LED背光超大显示,中英文操作菜单  多种通信接口USB、LAN、VGA、GPIB、R

HP-ESAL1500A频谱分析仪

HP ESA-L1500A频谱分析仪型号:Agilent ESA-L1500A (E4411A)频谱分析仪名称:便携式 频谱分析仪带宽:9K - 1.5GL1500A频谱分析仪的优点:·5ms扫描缩短了测量时间·迅速的显示更新速率为调试提供接近实时的响·大大缩短测试时间并提高了生产效率HP ESA-

Agilent安捷伦8560E频谱分析仪

Agilent 8560E 便携式射频频谱分析仪提供了以前在更大、更昂贵的台式分析仪中所具备的测量能力和性能。该分析仪将出色的相位噪声、灵敏度、1 Hz 分辨率带宽、合成调谐和宽动态范围结合在一个坚固耐用的 MIL 封装中,可承受恶劣的环境条件。它为使用数字调制的突发载波信号的邻道功率 (ACP)