基于HFSS的射频微波系统设计仿真平台介绍

一、概述:射频/微波电路是雷达、导航、测控、制导、通信和电子对抗系统的重要组成部分,对系统的性能和可靠性有重要影响。随着小型化要求和系统指标包括发射功率、接收灵敏度、工作带宽、通道一致性的不断提高,对射频微波有源和无源电路提出了更高的要求,进一步加大了设计难度,主要体现在:1)、技术指标高,设计调试量大;2)、仿真计算量大,非线性交调与谐波分量增加;3)、设计参数敏感度提高,对加工精度和参数准确度要求高;4)、寄生效应突出,影响电路性能;5)、与天线的协同设计与调试;6)、发热和温升对电路性能的影响。基于射频/微波电路的这些特点,想要高效进行射频/微波电路的设计,需要仿真软件具备以下功能:1)、具备强大的非线性电路设计仿真能力,能够对任意多的谐波分量、多个晶体管、多级电路进行精确仿真,具备仿真整个收发链路,包括混频、滤波、放大、倍频、振荡等的能力;2)、能够导入电路板布线数据和层叠结构,能够方便地改变电路板材料特性,研究不同电路......阅读全文

基于毫米波微带天线设计的射频电路实验-(二)

2. 3 天线阵列设计 1) 天线形式确定   上式中,λ 0 为中心频率处的真空波长; f x 和 σ x为波束展宽因子; d 为辐射单元间距; N 为辐射单元数,α m 为最大辐射方向与平面阵元之间的夹角。为满足单元副瓣抑制条件,单元间距 d 必须小于波长λ 0

计算电磁学各种方法比较和电磁仿真软件(一)

计算电磁学中有众多不同的算法,如时域有限差分法(FDTD)、时域有限积分法(FITD)、有限元法(FE)、矩量法(MoM)、边界元法(BEM)、 谱域法(SM)、传输线法(TLM)、模式匹配法(MM)、横向谐振法(TRM)、线方法(ML)和解析法等等。在频域,数值算法有:有限元法(FEM - F

基于Zigbee的土壤墒情监控系统设计

0 引言随着全球水资源供需矛盾的日益加剧, 节水农业已成为当今具有世界意义的焦点问题之一,世界各国都十分重视发展节水农业。以色列、日本、美国等国家都已采用先进的节水灌溉制度。通过采用遥感、 遥测监测土壤墒情和作物生长等新技术, 对灌溉区用水进行监测预报, 实现灌溉区水资源的动态管理, 不但成功地提高

嵌入式软件系统测试中的仿真系统结构设计

   1 嵌入式系统概述    嵌入式系统是以计算机技术为基础,以应用为中心,并且软硬件可裁剪,适用于应用系统对功能、可靠性、成本、体积、功耗有严格要求的计算机系统。    嵌入式软件是基于嵌入式系统设计的软件,是计算机软件的一种,同样由程序及文档组成,可细分成系统软件、支撑软件、应用软件三类。

毫米波圆极化介质复合波导缝隙阵列天线的HFSS设计

本文利用ANSYS HFSS设计了一种工作于毫米波段的介质复合波导缝隙天线阵列,在介质覆铜板加工出缝隙并与波导槽复合形成辐射结构,利用HFSS 软件仿真并分析缝隙导纳,泰勒加权实现阵列综合。设计平面和差网络实现天馈系统一体化,利用介质覆铜板加工出圆极化栅,并利用HFSS对整体天线进行了仿真调

想要成为一个优秀的射频工程师--这么做最有效(一)

  经常有网友在网络上问,一个射频工程师应具备哪些知识,怎样才能把射频工作做好。有一个关于这个问题的讨论贴都跟贴了几十条,看来这是一个普遍的问题。  那么怎么样才能把射频工作做好呢?可以说没有一个人敢说这样或者那样就一定可以学好射频,做好射频;很简单,如果你的大学老师,你的导师这样的专业理论

ANSYS-16.0-高频仿真新亮点

■无线和有线通信设备随着物联网的爆炸性发展,无人机和移动设备的持续增长推动了对手机等移动设备中复杂结构件上的集成天线以及其他元件设计等仿真工具的需求。随着16.0的推出,ANSYS已向用户提供了一种先进技术,便于用户设计和优化上述组件并在整个环节中充分利用。ANSYS HFSS可让工程师能够

HFSS在天线设计上的应用(二)

4)设置端口激励:天线的馈电点设置在整个天线的中心位置,采用集中端口Lump port,具体设置参考如下。5)设置边界条件:要在HFSS里面分析天线的对外辐射场,需要将边界条件设置为辐射边界,即Radiating only,辐射边界距离辐射体的距离不能小于天线波长的四分之一。如上模型图。6)制定激励

HFSS在天线设计上的应用(一)

HFSS作为业界第一个商业化的三维全波任意结构电磁场仿真工具,可以为天线及其系统设计提供全面的仿真功能:包括设计、优化及天线的性能评估。HFSS能够精确仿真计算天线的各种电性能,包括二维、三维远场/近场辐射方向图、天线增益、轴比、计划比、半功率波瓣宽度、内部电磁场场型、天线阻抗、电压驻波比、S参数等

HFSS在天线设计上的应用(四)

6)XOZ方向图:方向图是方向性函数的图形表示,它可以形象描绘天线辐射特性随着空间方向坐标的变化关系。辐射特性有辐射强度、场强、相位和极化。通常讨论在远场半径为常数的大球面上,天线辐射(或接收)的功率或者场强随位置方向坐标的变化规律,并分别称为功率方向图和场方向图。天线方向图是在远场区确定的,所以又

HFSS在天线设计上的应用(三)

2)查看回波损耗S11:回波损耗回波损耗是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射,是天线设计需要关注的参数之一。上面的S11图是天线在2G Hz ~3 G Hz频段内的回波损耗,这个贴片偶极子天线中心频率约为2.45G Hz。3)电压驻波比VSWR:电压驻波比VSWR,是指驻波的电压

基于云平台的水质监测系统问世

  中国航天科工二院23所下属北京航天微电科技有限公司(以下简称微电公司)近日自主研发出基于云平台的水质监测系统,可快速、准确、长时间地获取局部水域的水质数据。   长期以来,我国水污染问题难以改善。城市水质污染的成因主要包括污染企业偷排、不良餐饮业丢弃废物、河流附近居民丢弃生活废品等。对城市内部河

为智能手机开发可靠天线(二)

该团队使用仿真技术研究了各种天线设计。他们改变辐射、耦合和电感短路带的长度和宽度,以及短路和馈入引脚的位置。为了进行HFSS仿真而修改尺寸会带来散射参数(S参数)的显著改变,尤其是反射损耗(S11)。反射损耗可以用于判断天线在不同频率下的性能。为了改善824MHz到2,500MHz频率范围内的反射损

中国科大设计出一类基于简并光腔系统的新颖量子模拟平台

  中国科学技术大学教授、中国科学院院士郭光灿领导的中国科学院量子信息重点实验室在量子模拟方向取得创新性进展。该实验室的周正威、周幸祥、李传锋等人设计出一种特殊的一维级联简并光腔系统,通过对腔中具有轨道角动量自由度的光子进行探测,可以有效地模拟二维拓扑物理的各种现象。相关研究工作于7月6日发表在Na

HFSS算法及应用场景介绍(一)

前言相信每一位使用过HFSS的工程师都有一个疑问或者曾经有一个疑问:我怎么才能使用HFSS计算的又快又准?对使用者而言,每个工程师遇到的工程问题不一样,工程经验不能够直接复制;对软件而言,随着HFSS版本的更新,HFSS算法越来越多,针对不同的应用场景对应不同的算法。因此,只有实际工程问题切合合适的

微波消解仪的设计特点介绍

  微波消解仪厂家用心设计,满足用户多重多需  1.操作简单,彩色液晶显示屏结合电磁式触控面板设计,操作更舒适;双磁控管,高功率微波输出,高密度电磁场,有效提升微波强度和均匀性,样品消解更完全;温度、压力双重测控,全钢结构激光无缝焊接工业腔体,内腔喷涂多达5层改性聚四氟乙烯,耐强酸、耐腐蚀。  2.

基于新能源汽车平台专用故障仪的研究与设计

1 底层设计汽车故障诊断仪是车辆故障自检终端、汽车故障诊断仪(又称)是用于检测汽车故障的便携式智能汽车故障自检仪,用户可以利用它迅速地读取汽车电控系统中的故障,并通过液晶显示屏显示故障信息,迅速查明发生故障的部位及原因。根据目前科技发展趋势,传统的故障诊断仪因为采用封闭系统具有功能单一,操作相应慢,

HFSS算法及应用场景介绍(三)

混合算法(FEBI,IE-Region,PO-Region,SBR+ Region)前面对频率内的各种算法做了介绍并说明了各种算法应用的场景,很多时候碰到的工程问题既包括复杂结构物理也包括超大尺寸物理,如新能源汽车上的天线布局问题,对仿真而言,最好的精度是用全波算法求解,最快的速度是采用近似算求解,

射频与微波仪器展会丨2024年上海射频与微波仪器展-点击咨询

电子元器件展,电子仪器仪表展,电子仪器仪表展,电子元器件展,电子设备展,电子设备展,电子元器件展览会,电子仪器展,电子仪器展,电仪器展览会,继电器展,电容器展,连接器展,集成电路展2024上海国际电子元器件材料设备展览会地点:上海国际博览中心2024年11月18-20日参展咨询:021-5416 3

基于特征模理论的系统天线设计方法(五)

B、矩形环天线特征模分析例2中采用的矩形环形天线边长为0.229米,扫频范围为100MHz ~ 1400MHz,采样131个频点。图6、前八种模式特征角(CA)随频率的变化曲线图7、100MHz时前六种模式的电流分布图8、前八种模式MS随频率的变化曲线图9、在方形环天线棱边起始点馈电时其端口VSWR

基于特征模理论的系统天线设计方法(四)

图4-2、端口添加激励后的有源功率(紫色曲线天线总有源功率vs. 蓝色曲线为模式1有源功率vs.绿色曲线为模式3有源功率)图4-3、端口添加激励后的有源功率(蓝色曲线为模式1有源功率vs.绿色曲线为模式3有源功率),均采用公式计算得到,与图4-2所示的结果吻合图5-1、前六种模式的振子电流分布图5-

基于特征模理论的系统天线设计方法(一)

一、概述不断提高通信系统的通信容量和质量,是无线通信的永恒主题。随着无线通信技术的迅速发展,人们对天线的设计提出了越来越多的要求。采用超宽带(UWB)技术和多输入多输出(MIMO)技术在提高数据传输率方面具有极大的潜力,MIMO技术能够提高通信系统的信噪比,提高信道容量及抑制信道衰落,对于移动设备来

基于特征模理论的系统天线设计方法(三)

图2-2、前三种模式特征角(CA)随频率的变化曲线图2-3、前三种模式MS随频率的变化曲线以及带宽图3、反射系数随频率的变化曲线(蓝色曲线天线端口的总反射系数vs. 绿色曲线模式1反射系数vs. 红色曲线模式3反射系数)图4-1、模式加权系数随频率的变化曲线(蓝色曲线为模式1 vs. 绿色曲线为模式

基于特征模理论的系统天线设计方法(六)

C、MiMO天线特征模分析MIMO(Multiple-Input Multiple-Output)技术指在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与接收端的多个天线传送和接收,从而改善通信质量。它能充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的

基于特征模理论的系统天线设计方法(二)

由于λn的值变化范围很大,不便于观察,工程上也采用Modal Significance (MS)和特征角Characteristic Angle(CA)表示天线各个模式的谐振情况: (2.6-1)CA=180° -tan-1 λn    (2.6-2)由式(2.6-1)可知,MS的取值范围为(0,1

基于特征模理论的系统天线设计方法(七)

图15、宽边馈电不同位置时电流分布与模式加权系数MWC从图15可以看出:天线支节位于宽边时,非常容易激励出mode #2,馈电点位置最好位于中间,在此频段只有mode #2和mode  #5,  且mode #2较mode #5大7 dB,期望!,其他馈电方式,会激励出更多模式,造成隔离度变差。图1

RFID小型圆极化天线的设计

射频识别(Radio Frequency of Identificatio,RFID)是一种使用射频技术的非接触自动识别技术,具有传输速率快、防冲撞、大批量读取、运动过程读取等优势,因此,RFID技术在物流与供应链管理、生产管理与控制、防伪与安全控制、交通管理与控制等各领域具有重大的应

5G仿真解决方案-|-相控阵仿真技术详解-(一)

天线是移动通信系统的重要组成部分,随着移动通信技术的发展,天线形态越来越多样化,并且技术也日趋复杂。进入5G时代,大规模MIMO、波束赋形等成为关键技术,促使天线向着有源化、复杂化的方向演进。天线设计方式也需要与时俱进,采用先进的仿真手段应对复杂设计需求,满足5G时代天线不断提高的性能要求。

关于微波消解系统的微波特性介绍

  (1) 微波消解系统—金属材料不吸收微波,只能反射微波。如铜、铁、铝等。用金属(不锈钢板)作微波炉的炉膛,来回反射作用在加热物质上。不能用金属容器放入微波炉中,反射的微波对磁控管有损害。  (2) 微波消解系统—绝缘体可以透过微波,它几乎不吸收微波的能量。如玻璃、陶瓷、塑料(聚乙烯、聚苯乙烯)、

射频消融和微波消融技术简介

MWA和RFA技术均起始于上世纪90年代初期,1996年LeVeen伞状多电极得到美国FDA认证,极大地扩大了RFA的应用范围,与其他热消融技术比较,RFA是迄今世界范围内使用较多的技术,可以检索到的综述文献超过500篇。MWA主要在日本和我国开展,而RFA的报道绝大多数来源于欧美国家,可以认为MW