Antpedia LOGO WIKI资讯

金刚石晶体材料生长及应用(二)

5.光学类应用--大尺寸、顶级颜色独特的光学性能(从紫外到微波频段广域透光)和高的热导率以及低的热膨胀系数使其成为极好的光学窗口材料,在导弹头罩、雷达窗口等方面具有极大的优势;也可作为高能物理研究的探测材料以及高功率器件的热沉和窗口材料。6.功能性零件应用--大尺寸、高质量金刚石机械零件:将金刚石直接加工成工业机械零件或生长CVD薄膜提高耐磨能力,延长零件寿命。人工关节:在人工关节表面增加金刚石薄膜,改善部件性能和寿命。二、单晶材料生长天然金刚石稀缺,成本昂贵,满足不了工业化要求。人工合成大尺寸金刚石主要有高温高压法(HPHT)和化学气象沉积法(CVD)。1.HPHT法原理HPHT法是人工模拟天然钻石生长条件,在6.7GPa和1500度高温下辅以催化剂等实现石墨相到金刚石相的转变,控温控压和形成温度梯度是合成的关键。2. HPHT法产品3. HPHT法关键技术关键技术1:维持晶体生长恒定的压力曲线关键技术2:合理的温度梯......阅读全文

金刚石晶体材料生长及应用(四)

4. MPCVD法原理5. MPCVD法关键技术关键技术1:MPCVD生长腔室结构仿真关键技术2:高质量金刚石生长工艺优化关键技术3:自发成核、异常形核等抑制关键技术4:大尺寸单晶拼接生长技术关键技术5:大尺寸单晶剥离技术关键技术6:P型掺杂及记忆效应三、济南金刚石科技有限公司研究进展1.公

金刚石晶体材料生长及应用(二)

5.光学类应用--大尺寸、顶级颜色独特的光学性能(从紫外到微波频段广域透光)和高的热导率以及低的热膨胀系数使其成为极好的光学窗口材料,在导弹头罩、雷达窗口等方面具有极大的优势;也可作为高能物理研究的探测材料以及高功率器件的热沉和窗口材料。6.功能性零件应用--大尺寸、高质量金刚石机械零件:将

金刚石晶体材料生长及应用(一)

当前,新型冠状病毒仍在持续,对产业及企业造成了一定程度的影响,也牵动着各行各业人们的心。在此形势下,中国半导体照明网、极智头条,在国家半导体照明工程研发及产业联盟、第三代半导体产业技术创新战略联盟指导下,开启疫情期间知识分享,帮助企业解答疑惑。助力我们LED照明企业和产业共克时艰。本期,极智课堂邀请

金刚石晶体材料生长及应用(三)

显示屏中,cob光源和led光源的区别是什么?一般来说,led集成光源是用COFB封装技术将led晶粒直接封装在均温板或铜基板上,形成多晶阵,而COB光源是高功率的集成面光源,是直接将led发光芯片贴在高反光率的镜面金属基板上的集成面光源技术。cob光源将小功率芯片封装在PCB板上,和普通SMD小功

蛋白晶体高度稳定晶体框架材料问世

  近日,德国亥姆霍兹柏林研究中心和复旦大学江明院士课题组将伴刀豆球蛋白A与辅助分子(碳水化合物)以及罗丹明连接起来,帮助蛋白质对称排列,联合研究开发出了一种全新的材料——蛋白质晶体框架材料,形成高度稳定的晶体,而且形成了可控制的互穿网络。在这一过程中,碳水化合物首先与蛋白结合,然后罗丹明开始二聚

德国新型金刚石散热材料性能大幅提升

  据有关消息报道,德国Fraunhofer Institute的研究人员们开发出了一种新型散热材料,由铜和金刚石两种成分复合而成,可提供比铜、铝更高的散热效率。不过,这种铜-金刚石复合材料还只是出现在展示中,尚未有实际产品。也许今后能在笔记本里或者显卡、CPU散热器上看到这种新材料的身影。

原子“搭建”晶体 有望实现定制不同用途晶体材料

  英国研究人员首次能够观看晶体由原子一个一个地“搭建”而成的全过程,这赋予了他们令人难以置信的控制纳米微观结构的能力。这项被称为纳米晶体测量学(Nanocrystallometry)的新技术有望用于定制具有不同用途的晶体,比如净水剂或者隐形斗篷等。  “这是第一次我们可以真正拍摄到单个原子的运动,

r-TIAL纳米晶体材料的合成

纳米晶体材料的合成一直面临产量与尺寸的问题。本研究的目的在于采用行星式高能球磨机研发一种合成纳米-TiAl晶体的革新性方法。本研究采用了德国 Fritsch公司的P4----可变转动速率比行星式高能球磨机,使用碳化钨的研磨装置,利用机械合金的方法,而无需其他的操作,最大限度的降低了样品 的

全球最小晶体管抛弃硅材料

  北京时间10月7日晚间消息,美国劳伦斯伯克力国家实验室(以下简称“伯克力实验室”)教授阿里-加维(Ali Javey)领导的一个研究小组日前利用碳纳米管和一种称为二硫化钼的化合物开发出了全球最小的晶体管。  晶体管由三个终端组成:源极(Source)、漏极(Drain)和栅极(Gate)。电流从

中德联合研发出蛋白晶体框架材料

  近日,德国亥姆霍兹柏林研究中心和复旦大学江明院士课题组将伴刀豆球蛋白A与辅助分子(碳水化合物)以及罗丹明连接起来,帮助蛋白质对称排列,联合研究开发出了一种全新的材料——蛋白质晶体框架材料,形成高度稳定的晶体,而且形成了可控制的互穿网络。在这一过程中,碳水化合物首先与蛋白结合,然后罗丹明开始二聚化