液质使用禁忌上

液质使用禁忌-上 1、酸性物质适合做负离子检测,所以流动相偏碱性较合适,促使其解离,碱性物质适合做正离子检测,流动相中适当的加入酸,促使其形成正离子,流动相中适当加一些醋酸钠(或者醋酸铵),可形成加钠的正离子或者加铵的正离子。 推荐使用的流动相和添加剂: 有机溶剂:反相:乙腈/甲醇/乙醇/异丙醇/二氯甲烷 正相:吐仑/己烷/苯/环己烷/四氯化碳 缓冲液: 乙酸铵/甲酸铵 酸:甲酸/乙酸/三氟乙酸(正离子) 碱:氨水 不推荐使用/尽量不用的: 有机溶剂: 四氢呋喃 缓冲液:磷酸盐/柠檬酸盐/碳酸盐 酸:硫酸/磷酸/盐酸/高氯酸/磺酸 碱:季胺/强碱/三乙胺 其他:清洁剂/表面活性剂/离子对试剂/不挥发的盐 2、糖苷类的物质在做FAB和esi(+)时,峰往往比峰要强,此为经验,原因只是推测可能和天然产物的提取过程有关;盐类化合物如盐酸盐、硫酸盐在质谱中酸的部分一般不会出现;二羧酸盐(esi负离子......阅读全文

详细介绍液质联用仪的使用功能及优点

仪器系统的功能:  1、集成式四极杆质量过滤器实现前体离子选择性。在Orbitrap HR/AM检测之前,MS/MS碎裂过程发生在能量更高的碰撞诱导解离池中。  2、新型C-Trap离子光学系统和HCD碰撞池提供了快速HCD MS/MS扫描并改善了低质量数离子的传递,从而提高灵敏度和定量性能,尤其适

液质联用仪高效液相系统

高效液相系统高效液相色谱仪一般包括四个部分:高压输液系统、进样系统、分离系统和检测系统。此外,还可以根据一些特殊的要求,配备一些附属装置,如梯度洗脱、自动进样及数据处理装置等。

液质联用中的液相色谱

  据统计,已知化合物中约80%的化合物是亲水性强、挥发性低的有机物,热不稳定化合物及生物大分子,这些化合物的分析最适合于液相色谱,当然毛细管电泳也可以,只不过毛细管电泳的毛细管中无填料,因此“变数”较少,适应的复杂体系也较少,远不及液相色谱使用得广泛。当和质谱联用时,液相色谱的流动相适合于流入质谱

液质联用仪分类

液质联用仪分类有多种。1、按分析目的可分:实验室液质联用仪和工业液质联用仪。2、按离子化方式可分:快原子轰击电离液质联用仪、基质辅助激光解吸电离液质联用仪、电喷雾电离液质联用仪和大气压化学电离液质联用仪等。3、按质量分析器的工作状态可分:静态液质联用仪和动态液质联用仪。4、按分析对象的状态可分:原子

液质联用仪分类

液质联用仪分类有多种。1、按分析目的可分:实验室液质联用仪和工业液质联用仪。2、按离子化方式可分:快原子轰击电离液质联用仪、基质辅助激光解吸电离液质联用仪、电喷雾电离液质联用仪和大气压化学电离液质联用仪等。3、按质量分析器的工作状态可分:静态液质联用仪和动态液质联用仪。4、按分析对象的状态可分:原子

什么是液质分离

关于原理分类等,你直接再网上输入LC-MS搜索就会有很多的,这里就不CTRL-C了,至于这种用法的单位,因为质谱仪还是相当昂贵的,维护起来费用也高,所以用的单位还是不多的。但是大的医药企业的分析质量控制科室有可能会用。但一般来说研究机构和高校用的比较多吧。比如药科大学的分析测试中心和药物代谢研究中心

液质联用的简介

  液质联用(HPLC-MS)又叫液相色谱-质谱联用技术,它以液相色谱作为分离系统,质谱为检测系统。样品在质谱部分和流动相分离,被离子化后,经质谱的质量分析器将离子碎片按质量数分开,经检测器得到质谱图。液质联用体现了色谱和质谱优势的互补,将色谱对复杂样品的高分离能力,与MS具有高选择性、高灵敏度及能

液质联用的应用

液质联用的应用随着联用技术的日趋完善,HPLC-MS逐渐成为最热门的分析手段之一。特别是在分子水平上可以进行蛋白质、多肽、核酸的分子量确认,氨基酸和碱基对的序列测定及翻译后的修饰工作等,这在HPLC-MS联用之前都是难以实现的。HPLC-MS作为已经比较成熟的技术,目前己在生化分析、天然产物分析、药

液质联用的意义

液质联用的意义色谱的优势在于分离,为混合物的分离提供了最有效的选择,但其难以得到物质的结构信息,主要依靠与标准物对比来判断未知物,对无紫外吸收化合物的检测还要通过其它途径进行分析。质谱能够提供物质的结构信息,用样量也非常少,但其分析的样品需要进行纯化,具有一定的纯度之后才可以直接进行分析。因此,人们

液质联用分析特点

液质联用分析特点HLPC-MS除了可以分析气相色谱-质谱(GC-MS)所不能分析的强极性、难挥发、热不稳定性的化合物之外,还具有以下几个方面的优点:①分析范围广,MS几乎可以检测所有的化合物,比较容易地解决了分析热不稳定化合物的难题;②分离能力强,即使被分析混合物在色谱上没有完全分离开,但通过MS的

液质原理及维护

 一、原理、分类、特点   LC-MS原理概述   液质联用原理与气质联用类似,它以液相色谱作为分离系统,质谱为检测系统。样品在质谱部分和流动相分离,被离子化后, 经质谱的质量分析器将离子碎片按荷质比分开,经检测器得到质谱图。   体现了色谱和质谱优势的互补,将色谱对复杂样品的高分离能力

液质联用操作要义

经验总结一:液质使用经验与禁忌1、酸性物质适合做负离子检测,所以流动相偏碱性较合适,促使其解离,碱性物质适合做正离子检测,流动相中适当的加入酸,促使其形成正离子,流动相中适当加一些醋酸钠(或者醋酸铵),可形成加钠的正离子或者加铵的正离子。2、糖苷类的物质在做FAB和esi(+)时,[M+Na]峰往往

液质联用经验汇总

经验总结一:液质使用经验与禁忌1、酸性物质适合做负离子检测,所以流动相偏碱性较合适,促使其解离,碱性物质适合做正离子检测,流动相中适当的加入酸,促使其形成正离子,流动相中适当加一些醋酸钠(或者醋酸铵),可形成加钠的正离子或者加铵的正离子。液质分析中推荐使用的流动相和添加剂推荐使用不推荐使用/尽量不用

液质联用的质谱发展史

  早在19世纪末,E.Goldstein在 低压放电实验中观察到 正电荷粒子,随后W.Wein发现正电荷 粒子束在磁场中发生偏转,这些观察结果为 质谱的诞生提供了准备。  Joseph John Thomson  世界上第一台质谱仪于1912年由 英国 物理学家Joseph John Thomso

液质联用仪质谱的性能指

1、分辨率 能将两个相邻的质谐﹙质量相差1或小于1﹚予以分离的能力。低分辨率的液相色谱-质谱联用仪其质量分辨率一般用单位分辨率,若以u表示半峰宽所占的质量数,则单位分辨率的值为≤0.5u﹙ FWHM﹚,在全质量范围达3000时,按最高质量处的分辨率换算,可达6000﹙FWHM或称50%峰宽﹚,据已有

液质联用仪信号低是液相原因还是质谱原因

这个不好说,两种原因都有可能,也有可能是你接口的问题。首先要确定液相条件适合进质谱;如果是优化过的液相条件,那就可能是质谱设置的问题。进质谱的样品必须能很好的被雾化,如果进质谱的流量大而仪器设置没有跟上,样品雾化效果差,信号自然也低。另外,如果样品浓度太低信号也会差。

液质联用中的质谱——串联质谱篇(中)

  本文举几例常见的串联质谱仪,篇幅较长分为上、中、下三篇。  线性离子阱LIT/FTICR和LIT/Orbitrap  QqQ和QTOF都是串联两个“离子束”型分析器,近年来还有一种趋势是串联两个离子捕获型分析器,线性离子阱LIT/FTICR是此类最早的类型,由于维护困难,近年来慢慢被LIT/Or

液质联用中的质谱——串联质谱篇(下)

  本文举几例常见的串联质谱仪,篇幅较长分为上、中、下三篇。  串联质谱扫描方式  串联质谱的扫描方式包括以下几种:  1、子离子扫描/产物离子扫描/碎片离子扫描(Product Ion Scan/Fragment Ion Scan):  选择某一质量的母离子进入碰撞室,与碰撞室内的碰撞气体发生解离

液质联用中的质谱——串联质谱篇(上)

  在连接了前面的离子源、离子传输后,质谱的质量分析器还可以空间或时间的方式进行串联分析(MS/MS或MSn)。此时,第一个质量分析器用于选择与分离母离子(Parent Ion,又称前体离子Precursor Ion),被选择的母离子碎裂后产生子离子(Daughter Ion,又称产物离子Produ

zhufangwei:使用TSQ-finnigan液相质谱心得以及维护体会

这里,查看全文: http://www.antpedia.com/viewspace-32804

你需要知道的液质使用禁忌,千万别大意!

   1、酸性物质适合做负离子检测,所以流动相偏碱性较合适,促使其解离,碱性物质适合做正离子检测,流动相中适当的加入酸,促使其形成正离子,流动相中适当加一些醋酸钠(或者醋酸铵),可形成加钠的正离子或者加铵的正离子。   推荐使用的流动相和添加剂:   有机溶剂:反相:乙腈/甲醇/乙醇/异

液质型号高分辨质谱系列相关简介

  技术特点:X500R QTOF的智能工程设计,采用简约的全新台式设计,能提供出色性能,且稳定可靠。X500R系统采用独有的 N型离子通路,在保证高分辨的同时,也能获得高的灵敏度; 恒温的TOF管设计,保证了质量稳定;同时X500R也延续了TripleTOF系列快的扫描速度,结合硬件方面多项技术,

液质联用中的质谱——真空系统篇

  真空是质谱仪运作的必要条件之一,也是操作质谱仪前首先要准备的工作。真空度越高,代表气体压力越低。压力常用的单位有帕斯卡(Pascal)、巴(Bar)、毫巴(mbar)、托(Torr)等(1mbar=0.01 Pa=0.75 Torr)。mbar和Torr之间的换算在低压时通常可以忽略。商业TOF

液质联用中的质谱——检测器

  质谱系统的关键要素是用于将质量分离离子流转换成可测量信号的检测器类型。常用的探测器包括:  1、电子倍增器(Electron Multiplier,EM)  离散金属板的串联连接,可将离子电流放大约108到可测量的电子电流。原理是让离子撞击到容易释放出二次电子的材质表面,二次电子经由重复撞击相同

液质联用仪分析质谱图的程序

  解析未知样的质谱图,大致按以下程序进行:解析分子离子区1, 标出各峰的质荷比数,尤其注意高质荷比区的峰。2,识别分子离子峰。首先在高质荷比区假定分子离子峰,判断该假定分子离子峰与相邻碎片离子峰关系是否合理,然后判断其是否符合氮律。若二者均相符,可认为是分子离子峰。3,分析同位素峰簇的相对强度比及

液质联用中的质谱——离子传输篇

  在离子源离子化后,离子经过离子传输部分(习惯上称为Q0区)进入后续的质量分析器。最早的ESI在采样锥后使用了传输毛细管,可以进一步离子化,后面再经过六极杆或八极杆进行离子聚焦和传输。后来的商品化设计融入了各家的专利设计,比如有的采用加大孔径的毛细管,有的采用一组加了电压的锥板。在离子聚焦和传输部

你需要知道的液质使用禁忌,千万别踩雷!

  酸性物质适合做负离子检测,所以流动相偏碱性较合适,促使其解离,碱性物质适合做正离子检测,流动相中适当的加入酸,促使其形成正离子,流动相中适当加一些醋酸钠(或者醋酸铵),可形成加钠的正离子或者加铵的正离子。   推荐使用的流动相和添加剂:   有机溶剂:反相:乙腈/甲醇/乙醇/异丙醇/

详细分析液质联用仪的使用功能及优点

 液质联用仪具有的检出限和定量下限,对于复杂基体和难于分析的样品,能够提供的超低浓度水平定量。这款质谱仪与具有特殊应用功能的软件相结合,保证了样品分析的大通量。其开创性的软件和硬件开发使得操作更加简单,结果更加准确可靠。为面临困难定量任务挑战的科研人员提供的灵敏度、分析速度以及动态范围。仪器结果的可

什么是液质联用法

关于原理分类等,你直接再网上输入LC-MS搜索就会有很多的,这里就不CTRL-C了,至于这种用法的单位,因为质谱仪还是相当昂贵的,维护起来费用也高,所以用的单位还是不多的。但是大的医药企业的分析质量控制科室有可能会用。但一般来说研究机构和高校用的比较多吧。比如药科大学的分析测试中心和药物代谢研究中心