傅里叶变换红外光谱仪谷类检测分析
近年来,少数造假者频频在陈旧大米中涂抹掺加植物油、矿物油,增加其亮度和光泽,冒充优质新鲜大米销售,严重危害消费者身心健康。张耀武等利用红外光谱对涂有和掺有矿物油的大米进行定性鉴别。将分离出含有矿物油的试样进行红外光谱测试,未出现 1745 cm-1脂 C=O 的伸缩振动吸收和1000~1300 cm-1伸缩振动吸收,证明该试样中含有直链烷烃的矿物油。文中指出该方法可用于对大米、饼干、瓜子和食用油中是否掺加工业矿物油的鉴定。 粮食在高温高湿条件下极易发霉变质,不仅造成经济损失还严重威胁人畜健康。刘凌平等利用傅里叶变换衰减全反射红外光谱技术结合化学计量学方法(ART-FTIR),对稻谷中7 种常见有害霉菌进行了快速鉴定,建立的线性判别分析和偏最小二乘判别分析模型对7种不同类别菌株的留一交互验证整体正确率分别达到 87.1 %和87.3 %,表明ART-FTIR 技术技术可用于谷物中霉菌不同属间的快速鉴别,尤其对不同菌属的霉菌具......阅读全文
实验室分析仪器-傅里叶变换红外光谱仪
它是非色散型的,核心部分是一台双光束干涉仪(图4中虚线框内所示),常用的是迈克耳孙干涉仪。当动镜移动时,经过干涉仪的两束相干光间的光程差就改变,探测器所测得的光强也随之变化,从而得到干涉图。经过傅里叶变换的数学运算后,就可得到入射光的光谱B(v):式中I(x)为干涉信号;v为波数;x为两束光的光程差
傅里叶变换红外光谱仪波数精度高
波数是红外定性分析的关键参数,因此仪器的波数精度非常重要。因为干涉仪的动镜可以被很精确地驱动,所以干涉图的变化很准确,同时动镜的移动距离是由He-Ne激光器的干涉条纹来测量的,从而保证了所测的光程差很准确。而现代He-Ne激光器的频率稳定度和强度稳定度都是非常高的,频率稳定度优于5*10-10,
傅里叶变换红外光谱仪的工作原理介绍
傅里叶变换红外光谱仪,简称为傅里叶红外光谱仪,同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪; 主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和
傅里叶变换红外光谱仪扫描速度快
傅里叶变换红外光谱仪的扫描速度比色散型仪器快数百倍,而且在任何测量时间内都能获得辐射源的所有频率的全部信息,即所谓的“多路传输”。扫描速度的快慢主要由动镜的移动速度决定的,动镜移动一次即可采集所有信息。这一优点使它特别适合与气相色谱、高压液相色谱仪器联机使用,也可用于快速化学反应过程的跟踪及化学
关于傅里叶变换红外光谱仪的优点介绍
1、波数精度高 波数是红外定性分析的关键参数,因此仪器的波数精度非常重要。因为干涉仪的动镜可以被很精确地驱动,所以干涉图的变化很准确,同时动镜的移动距离是由He-Ne激光器的干涉条纹来测量的,从而保证了所测的光程差很准确。而现代He-Ne激光器的频率稳定度和强度稳定度都是非常高的,频率稳定度优
傅里叶变换红外光谱仪的工作原理介绍
傅里叶变换红外光谱仪,简称为傅里叶红外光谱仪,同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪; 主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和定量分 析,广
傅里叶变换红外光谱仪基本原理
傅里叶变换红外光谱仪基本原理: 傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer),简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,
傅里叶变换红外光谱仪的使用及维护
傅里叶变换红外光谱(Fourier Transforminfrared spectroscopy)简写为FTIR。傅里叶红外光谱法是通过测量干涉图和对干涉图进行傅里叶变化的方法来测定红外光谱。红外光谱的强度h(δ)与形成该光的两束相干光的光程差δ之间有傅里叶变换的函数关系。傅立叶变换测定红外光谱用于
关于傅里叶变换红外光谱仪的分类介绍
1、傅里叶变换红外光谱仪按光学系统分类: 光谱仪按照光学系统的不同可以分为色散型和干涉型,色散型光谱仪根据分光元件的不同,又可分为棱镜式和光栅式,干涉型红外光谱仪即傅里叶变换红外光谱仪(FTIR)。其中光栅式的优点是可以重复光谱响应,机械性能可靠,缺点是效率偏低,对偏振敏感;干涉型光谱仪的优点
傅里叶变换红外光谱仪操作注意事项
傅里叶变换红外光谱仪是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领
傅里叶变换红外气体分析仪
傅立叶红外光谱气体分析仪将为红外光谱分析带来革命性的变化,在您的日常工作中起到无可替代的作用。小巧轻便的身材、即插即用的操作、简单易学的软件以及QuickSnapTM测量模块确保了其强大、可靠的 近红外 光谱分析能力。可分析几乎所有挥发性的 有机气体,以及 极性分子气体。 便携式红外光谱气体分
傅里叶变换红外光谱仪操作的注意事项
傅里叶变换红外光谱仪不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪, 主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成,可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤
傅里叶变换红外光谱仪按使用场景分类
傅里叶变换红外光谱仪根据使用场景不同可分为专业型与多用途型。专业型傅里叶变换红外光谱仪包括了大气环境傅里叶红外光谱仪、太空星载傅里叶光谱仪、化学分析傅里叶红外光谱仪、车载遥感傅里叶变换红外光谱仪等;多功能傅里叶变换光谱仪可以实现多种物质的分析,通常用于实验室对相应样品进行分析。
关于傅里叶变换显微红外光谱仪的优点介绍
傅里叶变换显微红外光谱仪是日本生产的精密仪器。 1、高光通量:光谱范围7800-350 CM-1 2、高信噪比:优于 50,000:1 3、波数精度高:优于0.01 CM-1; 4、高分辨率:优于0.09 CM-1; 5、灵敏度:小于9.65×10-5ABS; 傅里叶变换显微红外光谱
傅里叶变换红外光谱仪仪器结构组成部分
傅里叶变换红外光谱仪仪器应用领域:生物、制药、病理、化工、血液、细胞、基因工程等。 傅里叶变换红外光谱仪仪器结构组成部分: (1)光源:傅里叶变换红外光谱仪为测定不同范围的光谱而设置有多个光源。通常用的是钨丝灯或碘钨灯(近红外)、硅碳棒(中红外)、高压汞灯及氧化钍灯(远红外)。
傅里叶变换红外光谱仪操作的注意事项
傅里叶变换红外光谱仪不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪, 主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成,可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、
关于傅里叶变换红外光谱仪的结构组成介绍
傅里叶变换红外(Fourier Transform Infrared,FTIR)光谱仪主要由红外光源、分束器、干涉仪、样品池、探测器、计算机数据处理系统、记录系统等组成,是干涉型红外光谱仪的典型代表,不同于色散型红外仪的工作原理,它没有单色器和狭缝,利用迈克尔逊干涉仪获得入射光的干涉图,然后通过
傅里叶变换红外光谱仪仪器结构组成部分
傅里叶变换红外光谱仪仪器应用领域:生物、制药、病理、化工、血液、细胞、基因工程等。 傅里叶变换红外光谱仪仪器结构组成部分: (1)光源:傅里叶变换红外光谱仪为测定不同范围的光谱而设置有多个光源。通常用的是钨丝灯或碘钨灯(近红外)、硅碳棒(中红外)、高压汞灯及氧化钍灯(远红外)。 (2)分束
如何选择适合自己的傅里叶变换红外光谱仪?
选择适合自己的傅里叶变换红外光谱仪可以考虑以下几个方面:分析需求:明确你需要分析的物质类型(有机化合物、无机材料等)、样品形态(固体、液体、气体)以及分析目的(定性分析、定量分析、结构分析等)。不同的应用可能对光谱范围、分辨率等有不同要求。光谱范围:确保光谱仪的覆盖范围满足你的分析需求。一般来说,傅
实验室光谱仪器傅里叶变换红外光谱仪的工作原理
用一定频率的红外线聚焦照射被分析的试样,如果分子中某个基团的振动频率与照射红外线相同就会产生共振,这个基团就吸收一定频率的红外线,把分子吸收红外线的情况用仪器记录下来,便能得到全面反映试样成分特征的光谱,从而推测化合物的类型和结构。20世纪70年代出现的傅里叶变换红外光谱仪是一种非色散型红外吸收光谱
实验室光谱仪器傅里叶变换红外光谱仪的基本构成
①光源:光源能发射出稳定、高强度连续波长的红外光,通常使用能斯特(Nernst)灯、碳化硅或涂有稀土化合物的镍铬旋状灯丝。②干涉仪:迈克尔逊干涉仪(Michelson interferometer)的作用是将复色光变为干涉光。中红外干涉仪中的分束器主要是由溴化钾材料制成的;近红外分束器一般以石英和
如何判断附件是否与傅里叶变换红外光谱仪兼容?
要判断附件是否与傅里叶变换红外光谱仪兼容,可以考虑以下几个方面:确认附件的接口类型与光谱仪主机的接口匹配,以确保能够正确、稳固地连接。检查附件的适用光谱范围是否与光谱仪的工作光谱范围相契合。了解附件的工作原理,确保其与傅里叶变换红外光谱仪的工作方式相互兼容。例如,ATR 附件基于衰减全反射原理工作,
关于傅里叶变换红外光谱仪的辨率的介绍
分辨率是红外光谱仪的主要性能指标之一,是指光谱仪对两个靠得很近的谱线的辨别能力。一般棱镜式红外分光光度计的分辨率在1000cm-1处为3cm-1。光栅式仪器在1000cm-1处可达0.2cm-1,而傅里叶变换红外光谱仪在整个光谱范围内可达0.1cm-1~0.005cm-1。它的分辨率与仪器的光程
傅里叶变换红外光谱仪新技术动镜驱动方式
傅里叶变换红外光谱仪新技术 一、 动镜驱动方式迈克尔逊干涉仪是傅里叶变换红外光谱仪的核心组成部件,其由干涉仪、动镜和定镜组成。在红外数据的采集过程中,动镜必须保持直线进行往复运动,并在移动过程中同FTIR的干涉仪内部的光轴保持非常高的精度。使用机械轴承和空气轴承的直接式的动镜驱动系统可以达到这一目的
傅里叶变换红外光谱仪具有很高的分辨率
分辨率是红外光谱仪的主要性能指标之一,是指光谱仪对两个靠得很近的谱线的辨别能力。一般棱镜式红外分光光度计的分辨率在1000cm-1处为3cm-1。光栅式仪器在1000cm-1处可达0.2cm-1,而傅里叶变换红外光谱仪在整个光谱范围内可达0.1cm-1~0.005cm-1。它的分辨率与仪器的光程
关于傅里叶变换红外光谱仪的扫描速度的介绍
傅里叶变换红外光谱仪的扫描速度比色散型仪器快数百倍,而且在任何测量时间内都能获得辐射源的所有频率的全部信息,即所谓的“多路传输”。扫描速度的快慢主要由动镜的移动速度决定的,动镜移动一次即可采集所有信息。这一优点使它特别适合与气相色谱、高压液相色谱仪器联机使用,也可用于快速化学反应过程的跟踪及化学
傅里叶变换红外光谱仪FTIR研究不同产地陈皮
引言陈皮(Pericarpiumcitrireticulatae)为常用中药,具有理气健脾、燥湿化痰的功效。药材分为“陈皮”(为福橘、朱橘、大红袍和温洲密柑等的干燥成熟果皮,产于四川、浙江、福建、江西和湖南)和“广陈皮”(为茶枝柑和行柑的干燥成熟果皮,产于广东新会、四会),其中以“广陈皮”的质量为优
基于多级微反射镜的傅里叶变换红外光谱仪衍射效应分析
摘要对基于多级微反射镜的傅里叶变换红外光谱仪的衍射效应进行了计算分析, 讨论了多级微反射镜宽度, 衍射距离以及波长产生的衍射效应对光谱复原的影响。从模拟的结果可知, 在衍射距离小于10 cm,反射面宽度大于0
如何选择适合自己的傅里叶变换红外光谱仪的附件
不同的附件可能会对傅里叶变换红外光谱仪的分辨率产生一定影响,但通常这种影响相对较小。例如,一些附件的光学路径设计可能会引入额外的光程差或散射,从而在一定程度上影响光谱的分辨率。然而,仪器本身的光学系统、干涉仪性能和探测器特性等因素通常对分辨率起着更主要的决定作用。但在实际应用中,如果附件的质量不佳、
傅里叶变换红外光谱仪测定农药中吡虫啉含量
吡虫啉是烟碱类超高效杀虫剂,具有广谱、高效、低毒、低残留,害虫不易产生抗性,对人、畜、植物和天敌安全等特点,并有触杀、胃毒和内吸等多重作用。害虫接触药剂后,中枢神经正常传导受阻,使其麻痹死亡。产品速效性好,药后1天即有较高的防效,残留期长达25天左右。作为商品,农药中的吡虫啉含量在10%左右。