Antpedia LOGO WIKI资讯

甲醇吸附结构调控光催化反应的动力学机理

近日,中国科学院大连化学物理研究所分子反应动力学国家重点实验室研究员周传耀与厦门大学教授程俊等合作,结合紫外光电子能谱和程序升温脱附谱等表面科学技术与理论计算,阐明了甲醇吸附结构对其在TiO2(110)表面光催化反应动力学调控的微观机制。 在光催化领域,甲醇经常被用作空穴捕获剂。在表面科学领域,甲醇也常被用作探针分子来研究有机物与半导体衬底之间的相互作用,从而研究光催化反应的微观机理。自中科院院士杨学明团队首次从单分子水平观测到甲醇在TiO2(110)表面的光催化解离以来,国内外多个团队纷纷跟进,对CH3OH/TiO2体系进行研究。然而,由于激发光源(如脉冲激光)和探测技术(如STM针尖)等因素的干扰,实验上对吸附在TiO2(110)表面Ti5c位(五配位钛原子)的甲醇分子是否具有光催化活性存在争议。 该研究中,研究人员通过精确制备CH3OH/TiO2和CH3Oˉ/TiO2反应体系,选用波长为405±2 nm(刚刚实现金......阅读全文

甲醇合成催化剂的条件

一般采用铜基催化剂,由氧化铜状态还原为铜后具有活性。进口温度220-240度,床层温度不高于285度,,采用汽包液体循环带走热量;压力大约50-80个大气压;流量、空速等根据负荷和压缩机来定;气体成分根据转化工艺来定,一般看氢碳比。

新型低温甲醇催化剂研究获突破

  近日,大唐化工研究院与厦门大学合作研发的新型低温高性能甲醇催化剂通过了工业侧线试验验收。   专家组一致认为,新型甲醇催化剂的低温活性、热稳定性、选择性及抗工艺条件波动性能力等指标优异,催化剂在工业侧线运转中表现的总体性能达到预期效果,部分指标超过国内同类产品,达到国际先进水平,表明我国自主研

甲醇吸附结构调控光催化反应的动力学机理

  近日,中国科学院大连化学物理研究所分子反应动力学国家重点实验室研究员周传耀与厦门大学教授程俊等合作,结合紫外光电子能谱和程序升温脱附谱等表面科学技术与理论计算,阐明了甲醇吸附结构对其在TiO2(110)表面光催化反应动力学调控的微观机制。  在光催化领域,甲醇经常被用作空穴捕获剂。在表面科学领域

光谱法研究TiO2键合的分子催化剂的连续氧化过程

  加州大学尔湾分校Shane Ardo(通讯作者)等人利用光谱学手段研究了分子Ru(Ⅱ)吡啶燃料经过低强度可见光激发后,二重氧化态TiO2键合的分子催化剂的产生。电子从激发态的燃料相TiO2转移,产生Ru(ⅠⅡ)态,随之与邻近的Ru(Ⅱ)燃料进行多次自电子交换反应,最终在电荷重组前氧化远处锚

不同光子能量影响甲醇在 二氧化钛表面光催化解离速率

  近日,中科院大连化学物理研究所杨学明院士领导的科研团队在表面光化学反应动力学研究工作中取得新进展,研究成果Strong Photon Energy Dependence of the Photocatalytic Dissociation Rate of Methanol on TiO2

大连化物所二氧化钛表面光化学动力学研究取得系列成果

  近日,中科院大连化学物理研究所杨学明院士应邀为Energy & Environmental Science杂志撰写题为Surface Photochemistry Probed by Two-Photon Photoemission Spectroscopy的综述文章。该文简要回

大化所甲醇在二氧化钛上的解离研究取得新进展

单层甲醇覆盖的TiO2(110)在400nm飞秒光照射下的实时双光子光电子能谱  中科院大连化学物理研究所杨学明研究员领导的反应动力学研究组的研究工作Site-specific photocatalytic splitting of methanol on TiO2(110)发表在C

科学家实现低温高效CO2催化加氢制甲醇

原文地址:http://news.sciencenet.cn/htmlnews/2021/3/454913.shtm 温室气体二氧化碳(CO2)是诸多化学反应的最终产物。其过量排放加剧了全球平均气温的上升,给生态环境带来巨大压力。如何高效转化利用CO2,将其变废为宝,是能源化工领域的研究热点和难

化物所实现光催化生物质多元醇和糖类分子制备甲醇

  近日,中国科学院大连化学物理研究所生物能源化学品研究组研究员王峰团队利用光催化的方法,实现了温和条件下生物质多元醇裂解制备甲醇和合成气,为生物质转化利用提供了新思路。  甲醇和合成气是石油化工、煤化工产业中大宗的化工原料,可用来合成烯烃、芳烃等大宗化学品。同时甲醇也是一种清洁能源。生物质甲醇被认

山西煤化所原子层沉积设计新型纳米催化剂研究获进展

  氢能作为一种环境友好的清洁能源被认为是可替代化石燃料的重要能源。光催化分解水制氢是一种非常有前景的绿色制氢途径。影响光催化制氢效率的一个主要因素是电子和空穴的分离效率低。在半导体材料表面负载产氢或/和产氧助剂(例如,Pt,Pd,CoOx,NiO)可有效提高电子和空穴的分离效率,尤其是含双助剂的光