原子吸收光谱法检测重金属的原理

原子吸收光谱仪基本原理:仪器从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测原素基态原子所吸收,由辐射特征谱线光被减弱的程度来测定试样中待测原素的含量。用途:原子吸收光谱仪可测定多种元素,火焰原子吸收光谱法可测到10-9g/ml数量级,石墨炉原子吸收法可测到10-13g/ml数量级。其氢化物发生器可对八种挥发性原素汞、砷、铅、硒、锡、碲、锑、锗等进行微痕量测定。因原子吸收光谱仪的灵敏、准确、简便等特点,现已广泛用于冶金、地质、采矿、石油、轻工、农业、医药、卫生、食品及环境监测等方面的常量及微痕量原素分析。......阅读全文

原子吸收光谱法的基本原理

从光源发射出具有待测元素特征谱线的光,通过试样蒸气时,被蒸气中待测元素的基态原子所吸收,吸收程度与被测元素的含量成正比。所以,可以根据测得的吸光度求得试样中被测元素的含量。

原子吸收光谱法的基本原理

   原子吸收光谱法是20世纪50年代中期出现,并在以后逐渐发展起来的一种新型的仪器分析方法,这种方法根据蒸气相中被测元素的基态原子对其原子共振辐射的吸收强度来测定试样中被测元素的含量。它在地质、冶金、机械、化工、农业、食品、轻工、生物医药、环境保护、材料科学等各个领域有广泛的应用。当有辐射通过自由

原子吸收光谱法的基本原理

  从光源发射出具有待测元素特征谱线的光,通过试样蒸气时,被蒸气中待测元素的基态原子所吸收,吸收程度与被测元素的含量成正比。所以,可以根据测得的吸光度求得试样中被测元素的含量。

原子吸收测定重金属的原理和方法如何

原子吸收光谱(Atomic Absorption Spectroscopy,AAS),即原子吸收光谱法,是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法,是一种测量特定气态原子对光辐射的吸收的方法。此法是20世纪50年代中期出现并在以

汞检测利器|冷原子吸收光谱法

        在日常生活中,汞与砷会以各种化学形态侵入到环境中,会污染空气,污染水质及土壤,同时也会造成食品污染,直接间接地对人体造成极大的伤害。检测技术中原子荧光检测技术则可以用来检测饮用水中汞和砷的含量,土壤中砷含量及食用大米中汞含量是否超出国家标准,用以保障人们的正常生活与身体健康。本文主要

原子吸收(发射)光谱法

方法提要试样经氢氟酸、硫酸分解,在!(H2SO4)=1%介质中,在原子吸收光谱仪上,使用空气-乙炔火焰,以硫酸钾作消电离剂,于波长670.8nm、780.0nm、852.1nm处,分别测定锂、铷、铯的吸光度或发射强度。一般常见元素均不干扰测定。测定范围0.001%~4.00%。仪器原子吸收光谱仪。试

原子吸收(发射)光谱法

方法提要试样经氢氟酸、硫酸分解,在!(H2SO4)=1%介质中,在原子吸收光谱仪上,使用空气-乙炔火焰,以硫酸钾作消电离剂,于波长670.8nm、780.0nm、852.1nm处,分别测定锂、铷、铯的吸光度或发射强度。一般常见元素均不干扰测定。测定范围0.001%~4.00%。仪器原子吸收光谱仪。试

原子吸收光谱法

用原子吸收光谱法测定铜,干扰少,方法灵敏、快速、简便,特别适用于低含量铜的测定。当试样中铜含量很低时,也可用APDC-MIBK、CHCl3或乙酸乙酯萃取,将铜富集于有机相中,直接在有机相中进行铜的测定。本法适用于0.001%~5%铜的测定,采用萃取有机相可测定0.1×10-6铜。方法提要试样经盐酸、

原子吸收(发射)光谱法

方法提要试样经氢氟酸、硫酸分解,在!(H2SO4)=1%介质中,在原子吸收光谱仪上,使用空气-乙炔火焰,以硫酸钾作消电离剂,于波长670.8nm、780.0nm、852.1nm处,分别测定锂、铷、铯的吸光度或发射强度。一般常见元素均不干扰测定。测定范围0.001%~4.00%。仪器原子吸收光谱仪。试

原子吸收光谱法

一、内容概述原子吸收光谱法(AAS)又称为原子吸收分光光度法,基本原理是每种元素都有其特征的光谱线,当光源发射的某一特征波长的光通过待测样品的原子蒸气时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使光源发出的入射光减弱,可以将特征谱线因吸收而减弱的程度用吸光度表示,吸光度与被测样品中

原子吸收光谱法的基本原理介绍

  原子吸收光谱法 (AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的

原子吸收光谱法中内标法的计算原理

内标法 internal standard method 是色谱分析中一种比较准确的定量方法,尤其在没有标准物对照时,此方法更显其优越性。内标法是将一定重量的纯物质作为内标物(参见内标物条)加到一定量的被分析样品混合物中,然后对含有内标物的样品进行色谱分析,分别测定内标物和被测组分的峰面积(或峰高)

原子吸收光谱法中内标法的计算原理

内标法 internal standard method 是色谱分析中一种比较准确的定量方法,尤其在没有标准物对照时,此方法更显其优越性。内标法是将一定重量的纯物质作为内标物(参见内标物条)加到一定量的被分析样品混合物中,然后对含有内标物的样品进行色谱分析,分别测定内标物和被测组分的峰面积(或峰高)

原子吸收光谱法平台原子化技术的原理和装置结构

1977年L'vov等人提出了一种使吸收脉冲向石墨炉最终平衡温度区移动的通用方法,即所谓L'vov平台原子化技术。将一全热解石墨片置于石墨管炉中,与管壁紧密接触,见图1。图中平台尺寸为15mm长、4mm宽、1mm厚。中间有一凹槽,深0.5mm、长13mm、宽2mm,能容纳50μL试样

原子吸收光谱法检测酱油中铅含量

方法/原理/步骤      1、(原子吸收分光光度计|原子吸收光谱法检测酱油中铅含量)试验部分 1.3铅校正曲线铅标准系列 P-E 3030 AAS仪,石墨炉:0.0;20.0;50.0;100 ng pb/ml。用15% HN03稀释铅工作液(100 ng pb/ml)而成。 4

如何用原子吸收光谱法检测铜离子?

原子吸收光谱法适用于工业循环冷却水中铜含量为0.5~10mg/L的澜定.也适用于各种工业用水、原水及生活用水中铜含量的测定。1.铜离子检测方法提要水样经雾化喷人空气—乙快火焰中原子化,在原子蒸气中铜原于处于基态状态。以铜特征线(共振线)324.7nm为分析线,测定吸光度。2.铜离子检测试剂和材料①硝

原子吸收光谱法检测钙片中钙含量

溶液中的钙离子在火焰温度下转变为基态钙原子蒸气,当钙空心阴极灯发射出波长为422.7 nm的钙特征谱线通过基态钙原子蒸气时,被基态钙原子吸收,在恒定的测试条件下,其吸光度与溶液中钙浓度成正比。测定所用仪器:原子吸收分光光度计(附钙空心阴极灯)。仪器工作条件1 燃气和助燃气流量比例固定空气流量,改变乙

原子吸收光谱法检测酱油中铅含量

1、(原子吸收分光光度计|原子吸收光谱法检测酱油中铅含量)试验部分    1.1主要仪器及试剂    原子吸收光谱仪,金属套玻璃高效雾化器,氘灯背景校正。石墨炉,热解涂层石墨管,自动进样器(湖南创特)。高强度铅空心阴极灯。    4520A原子吸收光谱仪,横向直流加热石墨炉,交流纵向塞曼背景校正,横

原子吸收光谱法检测钙片中钙含量

原子吸收光谱法检测钙片中钙含量        溶液中的钙离子在火焰温度下转变为基态钙原子蒸气,当钙空心阴极灯发射出波长为422.7 nm的钙特征谱线通过基态钙原子蒸气时,被基态钙原子吸收,在恒定的测试条件下,其吸光度与溶液中钙浓度成正比。        测定所用仪器:原子吸收分光光度计(附钙空心阴极

原子吸收光谱法检测废水中的镉含量

  一、火焰原子吸收光谱法的发展   刘兆明等人[1]在对地表水的研究中,以双缝石英管对镉进行捕集,痕量镉的测试灵敏度较常规测试提升了两级,镉元素的检出下限也下降至 2.23×10- 5μg0mL�1�71。赵志宾等[2]在对煤中镉含量测试进行了测试,镉的回收率在 95-104%间。而在检测过程中,

原子吸收光谱法(AAS)

  原子吸收光谱法(AAS)具有灵敏度高、谱线简单、选择性好和不易受激发条件影响等待点,是痕量和超痕量元素分析的重要手段之一。  AAS常和分离与富集技术联用,来消除干扰和提高灵敏度。近年来,火焰原子吸收光谱法(FAAS)的应用研究,取得了很大进展,诸如原于捕集,缝管技术以反增感效应等新技术的开发研

原子吸收光谱法的应用

  原子吸收光谱主要用于样品中微量及痕量组分分析,可以分析元素周期表中绝大部分元素(但是各元素的检出限与元素本身的性质相关而不同)。该方法具有选择性好、测定精密度高、适用范围广、准确及简便快速等诸多优点。因原子吸收光谱仪的灵敏、准确、简便等特点,现已广泛用于冶金、地质、采矿、石油、轻工、农业、医药、

原子吸收光谱法的应用

①灵敏度高。许多元素绝对灵敏度为10~10克。②选择性好。许多化学性质相近而用化学方法难以分别测定的元素如铌和钽、锆和铪、稀土元素,其光谱性质有较大差异,用原子发射光谱法则容易进行各元素的单独测定。③分析速度快。可进行多元素同时测定。④试样消耗少(毫克级)。适用于微量样品和痕量无机物组分分析,广泛用

原子吸收光谱法的应用

①灵敏度高。许多元素绝对灵敏度为10~10克。②选择性好。许多化学性质相近而用化学方法难以分别测定的元素如铌和钽、锆和铪、稀土元素,其光谱性质有较大差异,用原子发射光谱法则容易进行各元素的单独测定。③分析速度快。可进行多元素同时测定。④试样消耗少(毫克级)。适用于微量样品和痕量无机物组分分析,广泛用

原子吸收光谱法的应用

①灵敏度高。许多元素绝对灵敏度为10~10克。②选择性好。许多化学性质相近而用化学方法难以分别测定的元素如铌和钽、锆和铪、稀土元素,其光谱性质有较大差异,用原子发射光谱法则容易进行各元素的单独测定。③分析速度快。可进行多元素同时测定。④试样消耗少(毫克级)。适用于微量样品和痕量无机物组分分析,广泛用

原子吸收光谱法的应用

①灵敏度高。许多元素绝对灵敏度为10~10克。②选择性好。许多化学性质相近而用化学方法难以分别测定的元素如铌和钽、锆和铪、稀土元素,其光谱性质有较大差异,用原子发射光谱法则容易进行各元素的单独测定。③分析速度快。可进行多元素同时测定。④试样消耗少(毫克级)。适用于微量样品和痕量无机物组分分析,广泛用

原子吸收光谱法的应用

①灵敏度高。许多元素绝对灵敏度为10~10克。②选择性好。许多化学性质相近而用化学方法难以分别测定的元素如铌和钽、锆和铪、稀土元素,其光谱性质有较大差异,用原子发射光谱法则容易进行各元素的单独测定。③分析速度快。可进行多元素同时测定。④试样消耗少(毫克级)。适用于微量样品和痕量无机物组分分析,广泛用

原子吸收光谱法的应用

  1原子吸收光谱技术发展简介  1955年,澳大利亚的沃尔什就首先提出原子吸收应用于化学分析的见解,并在1960年沃尔什和他的同事们设计和制造出最简单的原子吸收光谱仪这标志着世界上第一台原子吸收光谱仪的诞生。  原子吸收光谱仪虽然问世于澳大利亚,但在这里却没得到真正的发展、进步,随后却在美国的珀金

原子吸收光谱法的缺点

原子吸收光谱法的缺点  同时原子吸收光谱法存在一下不足之处:  原则上讲,不能多元素同时分析。测定不同元素时必须更换光源。测量难熔元素时不如等离子体发射光谱。对于共振线处于真空紫外区域的卤族元素和S、Ce等不能直接测定。如今商品化的原子吸收仪器设计的测定波长范围只在As193.7nm至852.1nm

火焰原子吸收光谱法与原子吸收光谱的区别

火焰是指原子化的方法,与之对应的还有石墨炉原子化法;原子吸收光谱是光源经原子化器后与元素对应谱线被吸收后再经分光系统分光色散后形成的光谱。