分子诊断常用技术(二)

( 五) 生物芯片1991 年Affymetrix 公司的Fordor利用其所研发的光蚀刻技术制备了首个以玻片为载体的微阵列,标志着生物芯片正式成为可实际应用的分子生物学技术。时至今日,芯片技术已经得到了长足的发展,如果按结构对其进行分类,基本可分为基于微阵列( microarray) 的杂交芯片与基于微流控( microfluidic) 的反应芯片2 种。1.微阵列芯片( 1) 固相芯片: 微阵列基因组DNA 分析( microarray-based genomic DNAprofiling,MGDP) 芯片: 将微阵列技术应用于MGDP 检测中已有超过十年的历史,其技术平台主要分为2 类,即微阵列比较基因组杂交( array-based comparative genomehybridization,aCGH) 和基因型杂交阵列( SNP array) 。顾名思义,aCGH 芯片使用待测DNA 与参比DNA 的双色比对来显示......阅读全文

现有分子诊断技术大盘点

感染性疾病如今出现了很多新的变化,旧的疾病有了新的特点,也出现了诸如埃博拉病毒之类新的疾病。传统的病原学检测以分离、培养、染色、生物化学鉴定为主,但是有操作复杂、检测周期长、干扰因素多、敏感性与特异性有限等缺点。虽然自动化技术缩短了检测时间,但并没有解决根本性问题,临床应用中急需一种新的,更有效的诊

基因诊断的概念、常用技术与应用

 基因诊断的概念  一、基本概念:  1.人类的绝大多数疾病都与基因有关,基因变异引起疾病两种类型:  1) 内源基因变异:由于先天遗传和后天内外环境因素的影响,人类的基因结构及表达的各个环节都可发生异常,从而导致疾病。分基因结构突变和表达异常。  2) 外源基因的入侵:各种病原体感染人体后,其特异

DNA重组实验中常用的技术(二)

DNA的重组  (一)DNA的酶切与连接  (1)酶切反应  同质粒DNA的鉴定,只不过是质粒DNA换为载体DNA。若大量酶切,则成比例增加。  (2)加2倍体积的预冷无水乙醇和1/10体积的3mol/l NaAc混匀,-20℃2h以上。  (3)15000rpm离心15min,弃上清。  (4)加

常用分子生物学和细胞生物学实验技术介绍(二)

核酸原位杂交用特定标记的已知顺序核酸作为探针与细胞级或组织切片中核酸进行复性杂交并对其实行检测的方法,称为核酸原位杂交(nucleic acid hybridization in situ)。用来检测DNA在细胞核或染色休上的分布,与细胞内RNA进行杂交以研究该组织细胞中特定基因表达水闰;还

分子生物学常用试剂的配制(二)

  15.5ml 85%磷酸(1.679g /ml)   40ml 0.5mmol/L EDTA(pH8.0)   使用时再稀释10倍。   Tris-硼酸(TBE):5×浓贮存液(每升):54g Tris 碱   27.5g 硼酸20ml 0.5mmol/L EDTA(pH8.0)

漫谈分子诊断技术50年(一)

一、基于分子杂交的分子诊断技术  上世纪60年代至80年代是分子杂交技术发展最为迅猛的20年,由于当时尚无法对样本中靶基因进行人为扩增,人们只能通过已知基因序列的探针对靶序列进行捕获检测。其中液相和固相杂交基础理论、探针固定包被技术与cDNA探针人工合成的出现,为基于分子杂交的体外诊断方法进行了最初

聚焦精准医疗之分子诊断技术

文章导读  分子诊断是精准医疗的技术基础,也是体外诊断增速最快的分支行业。近几年分子诊断产业以较快速度稳步增长。市场占有率还不高,处于行业成长初期,相对免疫诊断、生化诊断来讲,发展并不成熟,中国分子诊断行业年均增速达到25%。分子诊断简介  分子诊断技术是应用分子生物学如DNA、RNA和蛋白质等方法

常用的分子生物学基本技术

核酸分子杂交技术由于核酸分子杂交的高度特异性及检测方法的灵敏性,它已成为分子生物学中最常用的基本技术,被广泛应用于基因克隆的筛选,酶切图谱的制作,基因序列的定量和定性分析及基因突变的检测等。其基本原理是具有一定同源性的原条核酸单链在一定的条件下(适宜的温室度及离子强度等)可按碱基互补原成双链。杂交的

分子生物学常用实验技术(十)

第二节RFLP 技术一、材料   基因组DNA(大于50kb,分别来自不同的材料)。二、设备  电泳仪及电泳槽, 照相用塑料盆5 只,玻璃或塑料板(比胶块略大) 4 块,吸水纸若干,尼龙膜(依胶大小而定),滤纸,eppendorf 管(0.5ml)若干。三、试剂:1、限制性内切酶(BamHⅠ, Ec

分子生物学常用实验技术(五)

第四章RNA 的提取和cDNA 合成  第一节概述  从真核生物的组织或细胞中提取mRNA,通过酶促反应逆转录合成cDNA 的第一链和第二链,将双链cDNA 和载体连接,然后转化扩增, 即可获得cDNA 文库,构建的cDNA 文库可用于真核生物基因的结构、表达和调控的分析;比较cDNA 和相

分子生物学常用实验技术(十三)

2. 从RNA 合成单链cDNA 探针cDNA 单链探针主要用来分离cDNA 文库中相应的基因。用RNA为模板合成cDNA 探针所用的引物有两种: (1)用寡聚dT 为引物合成cDNA 探针。本方法只能用于带Poly(A)的mRNA,并且产生的探针极大多数偏向于mRNA 3'末端序列

分子生物学常用实验技术(十八)

五、操作步骤:(一)、模板制备1、M13 单链模板制备:在转化入合适的大肠杆菌宿主菌且在含有指示剂如X-gal/IPTG 的培养基上铺板之后, 含有M13 重组子的细胞将表现出无色的"噬菌斑",事实上受感染的细胞并非被噬菌体溶菌或杀死,出现噬菌斑是因为被感染的细菌在生长速度上比其周围未感染的

分子生物学常用实验技术(十七)

第二节T7 DN A 聚合酶测序技术一、概述  T7 DNA 聚合酶最初具有5'→3'聚合酶活性以及单链和双链3'→5'外切酶活性。当T7 DNA 聚合酶用适当方法处理后,可使3'→5'外切酶活力明显下降。改造后的T7 DNA 聚合酶又称T7

分子生物学常用实验技术(十一)

第八章聚合酶链式反应(PCR)扩增和扩增产物克隆第一节概述  PCR(Polymerase Chain Reaction,聚合酶链反应)是一种选择性体外扩增DNA 或RNA 的方法.它包括三个基本步骤: (1) 变性(Denature):目的双链DNA 片段在94℃下解链; (2) 退火

分子生物学常用实验技术(七)

(四) 电泳分析  通常合成的cDNA 第一链和第二链长度为350-6000 碱基,需进行1.4%碱性琼脂糖电泳。将第一链和第二链掺入测定管中的反应液先用酚抽提,乙醇沉淀,方法见本章(二)第二链合成中的9-12 步,一般第一链和第二链上样量相同。1. 标准分子量DNA 参照物的同位素标记(1) 通常

分子生物学常用实验技术(九)

第三节从动物组织提取基因组DNA一、材料  哺乳动物新鲜组织。二、设备  移液管、高速冷冻离心机、台式离心机、水浴锅。三、试剂1、分离缓冲液:10mmol/L Tris?Cl pH7.4, 10mmol/L NaCl, 25mmol/L EDTA。2、其它试剂:10% SDS,蛋白酶K (20mg/

分子生物学常用实验技术(十五)

第十章测序技术  在分子生物学研究中,DNA 的序列分析是进一步研究和改造目的基因的基础。目前用于测序的技术主要有Sanger 等(1977)发明的双脱氧链末端终止法和Maxam 和Gilbert(1977)发明的化学降解法。这二种方法在原理上差异很大,但都是根据核苷酸在某一固定的点开始,随

分子生物学常用实验技术(十六)

(三)电泳:1、预电泳(1)当凝胶聚合完全后,拨出鲨鱼齿梳,将该梳子反过来,把有齿的一头插入凝胶中,形成加样孔。(2)立即将胶板固定在测序凝胶槽中,一般测序凝胶槽的上下槽是分开的,因而只有在固定好凝胶板后,方能加入TBE 缓冲液。(3)稀释10×TBE 缓冲液至1×TBE,将该缓冲液加入上下二个电泳

分子生物学常用实验技术(六)

一、材料  提纯TMV 病毒液(10mg/ml)。二、设备  冷冻台式离心机,低温真空干燥仪,电泳仪,电泳槽。三、试剂  TE-饱和酚:氯仿(1:1),氯仿,3M NaAc(pH5.2),乙醇(100%和70%),TE 缓冲液,无RNA 酶的双菌水。四、操作步骤1、取一eppendorf 管加入提纯

分子生物学常用实验技术(八)

第五章重组质粒的连接、转化及筛选第一节概述  质粒具有稳定可靠和操作简便的优点。如果要克隆较小的DNA 片段(<10kb)且结构简单,质粒要比其它任何载体都要好。在质粒载体上进行克隆,从原理上说是很简单的,先用限制性内切酶切割质粒DNA 和目的DNA 片段, 然后体外使两者相连接, 再用所得

分子生物学常用实验技术(一)

第一章质粒DNA 的分离、纯化和鉴定第二章DNA 酶切及凝胶电泳第三章大肠杆菌感受态细胞的制备和转化第四章RNA 的提取和cDNA 合成第五章重组质粒的连接、转化及筛选第六章基因组DNA 的提取第七章RFLP 和RAPD 技术第八章聚合酶链式反应(PCR)扩增和扩增产物克隆第九章分子杂交技术第十章测

分子生物学常用实验技术(十四)

三、菌落原位杂交  对分散在若干个琼脂平板上的少数菌落(100-200)进行克隆筛选时,可采用本方法。将这些菌落归并到一个琼脂主平板以及已置于第二个琼脂平板表面的一张硝酸纤维素滤膜上。经培养一段时间后,对菌落进行原位裂解。主平板应贮存于4℃直至得到筛选结果。1、材料:待检测的细菌平皿,已标记好的探针

分子生物学常用实验技术(三)

第二章DNA 酶切及凝胶电泳第一节概述一. DNA 的限制性内切酶酶切分析  限制性内切酶能特异地结合于一段被称为限制性酶识别序列的DNA 序列之内或其附近的特异位点上,并切割双链DNA。它可分为三类:Ⅰ类和Ⅲ类酶在同一蛋白质分子中兼有切割和修饰(甲基化)作用且依赖于ATP 的存在。Ⅰ类酶结

分子生物学常用实验技术(十二)

第九章分子杂交技术   互补的核苷酸序列通过Walson-Crick 碱基配对形成稳定的杂合双链分子DNA 分子的过程称为杂交。杂交过程是高度特异性的,可以根据所使用的探针已知序列进行特异性的靶序列检测。杂交的双方是所使用探针和要检测的核酸。该检测对象可以是克隆化的基因组DNA,也可以是细胞总D

分子生物学常用实验技术(四)

第三章大肠杆菌感受态细胞的制备和转化第一节概述  在自然条件下,很多质粒都可通过细菌接合作用转移到新的宿主内,但在人工构建的质粒载体中,一般缺乏此种转移所必需的mob 基因,因此不能自行完成从一个细胞到另一个细胞的接合转移。如需将质粒载体转移进受体细菌,需诱导受体细菌产生一种短暂的感受态以摄取外

分子蒸馏技术及应用推广(二)

  3设备类型   分子蒸馏技术自上世纪20年代问世以来,由于其分离机制和的分离效果而受到广泛重视。随着分子蒸馏技术应用领域的不断扩大,其设备尤其是分子蒸馏器也不断得到改进和完善。   (1)静止式分子蒸馏器   静止式分子蒸馏器是最早出现的一种简单、价廉的分子蒸馏设备。图1是一种典型的静止釜式分子

分子克隆常用载体

分子克隆常用载体  DNA片段的克隆需要合适的载体,载体或是质粒,或是噬菌体,或是病毒,通常大多经过人工改造[地的。作为载体必须具备两条件:一是该载体在细胞内必须能自主复制,即必须具备复制原点;二是该载体必须具备适合的酶切位点,且这些酶切位点不在复制原点区域内。以上两条,保证了载体的可繁殖性和可利用

分子诊断3大技术分析:qPCR、二代测序NGS和数字PCR

分子诊断是将分子生物学技术应用于疾病诊断的医学分支学科,利用分子生物学技术研究人体内源性或外源性生物分子的存在、结构或表达调控变化,为疾病的预防、预测、诊断、治疗、预后和转归提供信息和决策依据。精准医疗的发展,将持续推动分子诊断的进步。目前常见核酸分子诊断技术涉及三个技术:荧光定量PCR技术(qPC

核酸分子诊断三大技术:qPCR、二代测序NGS和数字PCR

分子诊断是将分子生物学技术应用于疾病诊断的医学分支学科,利用分子生物学技术研究人体内源性或外源性生物分子的存在、结构或表达调控变化,为疾病的预防、预测、诊断、治疗、预后和转归提供信息和决策依据。精准医疗的发展,将持续推动分子诊断的进步。目前常见核酸分子诊断技术涉及三个技术:荧光定量PCR技术(qPC