西安光机所在计算光学显微成像研究中取得进展

7月27日,中国科学院西安光学精密机械研究所副研究员潘安、研究员姚保利、研究员马彩文团队在Science China-Physics Mechanics & Astronomy上,在线发表题为High-throughput fast full-color digital pathology based on Fourier ptychographic microscopy via color transfer的封面文章(Cover Story)。 傅里叶叠层显微成像术(FPM)是一种高通量计算成像技术,其在组织切片显微数字病理学中可以避免传统的扫描拼接伪影,提高成像通量和效率。然而,传统FPM彩色化要对三波长进行重复操作,故其效率偏低。受到颜色匹配思路的启发,研究人员提出了一种基于彩色传递的全彩色化方法,命名为CFPM。研究人员在实验中比较了30组不同样本CFPM的成像情况,相比于传统方法,CFPM以平均0.4%的......阅读全文

TEM成像原理

样品放进样品室时最终是怎样成像的呢?成像原理:电子束最先通过聚光镜,聚光镜无放大作用,而有聚积电子束调节亮度的作用,经聚光镜的调节将电子束的直径调节在约2μm左右。这样细的电子束透过样品时,电子与样品中的原子发生碰撞,从而产生电子散射。(不同的结构成分对电子有着不同的散射程度,结构致密的,特别是被重

集成成像原理

 集成成像是一种自动立体(autostereoscopic )和多视角(multiscopic)三维成像技术,通过使用二维微透镜阵列(有时称为蝇眼透镜)捕获并重现光场,通常无需借助较大的集成物镜或观察透镜。再捕获模式下,将胶片或检测器耦合到微透镜阵列,每个微透镜都允许获取从该透镜位置的角度观察到的被

荧光成像系统

用荧光显微镜进行3D球状体荧光成像时,需要进行仪器设置优化和使用高级功能才能得到更好的成像结果。对球状体进行Z轴层扫时,需要选择合适的物镜并进行合适地聚焦才能拍出更清晰的图片。EVOS细胞成像系统和配套的CellesteTM成像分析软件可以完美地对球状体的大小、结构和蛋白表达水平进行定性和定量分析。

TEM成像原理

基本原理在光学显微镜下a无f法看清小s于b0。0μm的细微结构,这些结构称为2亚显微结构(submicroscopic structures)或超微结构(ultramicroscopic structures;ultrastructures)。要想看清这些结构,就必须选择波长0更短的光源,以6提高显

活体成像概述

一、引子  自从Roentgen发现了X光的用途,动物活体成像就走进了科学家的视野。活体成像有很多种模式,除了X光的离子辐射成像,还有声音、磁铁甚至光光成像。每种都有缺点和优点,举例来说,要确定解剖结构的位置和形状,CT扫描、MRI、超声波可能是较好的选择,但涉及到肿瘤细胞的注射位置、表达层面,他们

LSM成像原理

成像原理传统荧光显微镜一个难以克服的缺点是,来自焦平面以外的荧光也被物镜所收集,光学分辨率大大降低 。LSCM脱离了传统的场光源和局部平面成像模式采用激光为光源,在传统荧光显微镜成像的基础上,附加了激光扫描装置和共轭聚焦装置。激光束经照明针孔,经由分光镜反射至物镜,并聚焦于样品上,对样品焦平面上每一

凝胶成像品牌

凝胶成像仪属于高科技产品,是需要软、硬件紧密一致配合的高端分子生物分析仪器。主要用于科研、医疗、教学等项目,目前国内进口品牌和国产品牌的市场占有率差不多。目前凝胶成像厂家很多,市场上常见的凝胶成像如:进口品牌进口品牌美国的市场上见的是相对比较多的有:UVP、伯乐、alpha、SIM、KODAK、GE

浅谈细胞成像

许多科学研究人员通过加入特定化合物刺激细胞后继而来观察细胞的 2D 或 3D 结构变化,借此来阐释复杂的细胞内信号通路变化。科学研究者利用新的细胞成像和分析技术,大大提升了他们对未知领域的理解水平。 拥有一台低成本、高效率、高通量检测分析仪器,例如 ImageXpress® 细胞成像分析系统

SAR-成像原理

核磁共振成像维基百科,自由的百科全书跳转到: 导航, 搜索人脑纵切面的核磁共振成像核磁共振成像(Nuclear Magnetic Resonance Imaging,简称NMRI),又称自旋成像(spin imaging),也称磁共振成像、磁振造影(Magnetic Resonance Imagin

单色光成像与可见光成像对比

分别使用传统光源与激光光源对带有消影层的ITO的成像对比,在传统光源成像下,整个触控屏的观察区域是透明的,无法观察到ITO与非ITO区,如图3-3-(a)。但当在使用激光成像后,可以发现有ITO的区域与无ITO的蚀刻区分界清晰锐利,同时可以看到ITO表面上的微小缺陷,如图3-3-(b),这样的缺陷很

光声成像:-光学和超声成像的完美结合

光声成像: 光学和超声成像的完美结合---Endra小动物光声成像系统在肿瘤,血管,脑科学等领域的应用光声成像是近年来发展起来的一种无损医学成像方法,它结合了纯光学成像的高对比度特性和纯超声成像的高穿透深度特性,可以提供高分辨率和高对比度的组织成像。光声技术的原理是当一束光照射到生物组织上以后,生物

高光谱成像仪的成像技术原理

  高光谱成像仪是新一代传感器。在20世纪80年代初正式开始研制。研制这类仪器的主要目的是想在获取大量地物目标窄波段连续光谱图像的同时,获得每个像元几乎连续的光谱数据,因而称为成像光谱仪。目前成像光谱仪主要应用于高光谱航空遥感。在航天遥感领域高光谱也开始应用。  高光谱成像技术  高光谱成像技术是基

前沿显微成像技术专题——超分辨显微成像(2)

上一期我们为大家介绍了几种主要的单分子定位超分辨显微成像技术,还留下了一些问题,比如它的分辨率是由什么决定的?获得的大量图像数据如何进行重构?本期我们就来为大家解答这些问题。单分子定位超分辨显微成像的分辨率单分子定位超分辨显微成像的分辨率主要由两个因素决定:定位精度和分子密度。定位精度是目标分子在横

高光谱成像仪的成像技术原理

  高光谱成像仪是新一代传感器。在20世纪80年代初正式开始研制。研制这类仪器的主要目的是想在获取大量地物目标窄波段连续光谱图像的同时,获得每个像元几乎连续的光谱数据,因而称为成像光谱仪。目前成像光谱仪主要应用于高光谱航空遥感。在航天遥感领域高光谱也开始应用。   高光谱成像技术   高光谱成像

前沿显微成像技术专题——超分辨显微成像(1)

从16世纪末开始,科学家们就一直使用光学显微镜探索复杂的微观生物世界。然而,传统的光学显微由于光学衍射极限的限制,横向分辨率止步于 200 nm左右,轴向分辨率止步于500 nm,无法对更小的生物分子和结构进行观察。突破光学衍射极限,一直是科学家们梦想和追求的目标。虽然随着扫描电镜、扫描隧道显微镜及

植物表型成像系统WIWAM-Screening功能分析—成像分析

  1.叶绿素荧光成像分析:可对植物叶绿素荧光动态进行成像分析,以监测植物生理状态,胁迫生理如干旱胁迫、肥料胁迫、病虫害胁迫、环境污染毒性胁迫等等,还可对GFP(绿色荧光蛋白)进行成像分析,单幅成像面积40x40cm,成像测量参数包括Fo, Fm, Fv, Fo’, Fm’, Fv’, Ft, Fv

工业CT的3D成像系统的成像方法

  一种工业CT的3D成像方法和成像系统,包括相向设置的X射线发生器、弧形探测器、设置在同一条轴线上的*传送带和第二传送地,*传送带和第二传送带的相对端之间具有空隙,X射线发生器和弧形探测器以空隙处为圆心围绕*传送带和第二传送带转动设置。   X射线发生器包括X射线球管和束光器,束光器安装在X射线

化学发光成像系统和凝胶成像系统的区别

化学发光是A、B两种物质发生化学反应生成C物质,反应释放的能量被C物质的分子吸收并跃迁至激发态C*,处于激发的C*在回到基态的过程中产生光辐射。凝胶成像与化学发光的区别在于化学反应过程中伴随光辐射现象,故称为化学发光。化学发光成像系统是即插即用型一体机,适用于化学发光、多色荧光检测与普通凝胶检测,选

化学发光成像系统和凝胶成像系统的区别

化学发光是A、B两种物质发生化学反应生成C物质,反应释放的能量被C物质的分子吸收并跃迁至激发态C*,处于激发的C*在回到基态的过程中产生光辐射。凝胶成像与化学发光的区别在于化学反应过程中伴随光辐射现象,故称为化学发光。化学发光成像系统是即插即用型一体机,适用于化学发光、多色荧光检测与普通凝胶检测,选

化学发光成像系统和凝胶成像系统的区别

化学发光是A、B两种物质发生化学反应生成C物质,反应释放的能量被C物质的分子吸收并跃迁至激发态C*,处于激发的C*在回到基态的过程中产生光辐射。凝胶成像与化学发光的区别在于化学反应过程中伴随光辐射现象,故称为化学发光。化学发光成像系统是即插即用型一体机,适用于化学发光、多色荧光检测与普通凝胶检测,选

化学发光成像系统和凝胶成像系统的区别

化学发光是A、B两种物质发生化学反应生成C物质,反应释放的能量被C物质的分子吸收并跃迁至激发态C*,处于激发的C*在回到基态的过程中产生光辐射。凝胶成像与化学发光的区别在于化学反应过程中伴随光辐射现象,故称为化学发光。化学发光成像系统是即插即用型一体机,适用于化学发光、多色荧光检测与普通凝胶检测,选

质谱成像新观察:MALDIMS成像最新应用

  基质辅助激光解吸电离技术(MALDI)的出现使得质谱成像技术(Mass spectrometry imaging,MSI)可以用于测定组织内生物大分子的位置和分布,以及疾病生物标志物的鉴定和改变等。近日布鲁克成像全球应用开发经理Shannon Cornett博士讨论了质谱成像技术的最新进展及其对

光声成像技术在结构成像中的应用

光声成像技术可以实现类似超声成像技术达到的深层组织成像; 另一方面,  光声成像技术以组织的光学吸收系数为基础, 所以又能得到高对比度成像,  同时又避免了纯光学成像中光学散射的影响。在无损伤前提下,对小动物进行活体成像。Endra小动物光声成像系统既是应用光声技术的新型的无损伤活体成像模式,它同时

红外热成像仪和热成像有什么区别

简单来说,可以划等号来理解。自然界中只要高于绝对零度(-273℃)的物体,都会不断向外辐射红外线。红外成像仪通过光学系统、红外探测器芯片及电子处理系统,将物体表面红外辐射转换成可见图像。简单来说,红外热成像仪原理就是利用温度成像,将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代

化学发光成像系统和凝胶成像系统的区别

化学发光是A、B两种物质发生化学反应生成C物质,反应释放的能量被C物质的分子吸收并跃迁至激发态C*,处于激发的C*在回到基态的过程中产生光辐射。凝胶成像与化学发光的区别在于化学反应过程中伴随光辐射现象,故称为化学发光。化学发光成像系统是即插即用型一体机,适用于化学发光、多色荧光检测与普通凝胶检测,选

工业CT的3D成像系统的成像方法

目前工业无损立体3D检测多采用类似医用CT的形式,物品放在传送装置上,线阵探测器和球管在物品的上下旋转一定角度(如2度)拍一幅二维X光片旋转一周后对拍摄的180幅二维X光片进行数据重建处理,得到该物品一幅一定厚度(如1毫米)的切片图像,物体往前移动一定距离(如2毫米),再进行以上旋转拍片,得到该位置

化学发光成像系统和凝胶成像系统的区别

化学发光是A、B两种物质发生化学反应生成C物质,反应释放的能量被C物质的分子吸收并跃迁至激发态C*,处于激发的C*在回到基态的过程中产生光辐射。凝胶成像与化学发光的区别在于化学反应过程中伴随光辐射现象,故称为化学发光。化学发光成像系统是即插即用型一体机,适用于化学发光、多色荧光检测与普通凝胶检测,选

荧光成像与生物发光成像技术的优缺点比较

上次,我们对比了荧光成像和生物发光的基本原理。那针对自己的课题,生物发光和荧光成像哪个好?什么情况下选择生物发光,什么情况下选择荧光成像?今天为大家解答关键问题:荧光成像和生物发光成像的优缺点是什么?一、荧光成像技术优点数据来源:使用FOBI整体荧光成像系统对荧光染料Cy5标记的药物进行观察相比生物

化学发光成像系统和凝胶成像系统的区别

化学发光是A、B两种物质发生化学反应生成C物质,反应释放的能量被C物质的分子吸收并跃迁至激发态C*,处于激发的C*在回到基态的过程中产生光辐射。凝胶成像与化学发光的区别在于化学反应过程中伴随光辐射现象,故称为化学发光。化学发光成像系统是即插即用型一体机,适用于化学发光、多色荧光检测与普通凝胶检测,选

荧光成像与生物发光成像技术的优缺点对比

  一、荧光成像技术优点   数据来源:使用FOBI整体荧光成像系统对荧光染料Cy5标记的药物进行观察   相比生物发光成像,荧光成像技术的优势主要表现在:   1 荧光蛋白及荧光染料标记能力更强   荧光标记分子种类繁多,包括荧光蛋白、荧光染料、量子点标记等,可以对基因、蛋白、抗体、化合药