荧光检测器荧光产生相关介绍
从电子跃迁的角度来讲,荧光是指某些物质吸收了与它本身特征频率相同的光线以后,原子中的某些电子从基态中的最低振动能级跃迁到较高的某些振动能级。电子在同类分子或其他分子中撞击,消耗了相当的能量,从而下降到第一电子激发态中的最低振动能级,能量的这种转移形式称为无辐射跃迁。由最低振动能级下降到基态中的某些不同能级,同时发出比原来吸收的频率低、波长长的一种光,就是荧光。被化合物吸收的光称为激发光,产生的荧光称为发射光。荧光的波长总要长于分子吸收的紫外光波长,通常在可见光范围内。荧光的性质与分子结构有密切关系,不同结构的分子被激发后,并不是都能发射荧光。......阅读全文
荧光检测器的类型
荧光检测器类型:1、激发光谱。荧光属于光致发光,需选择合适的激发光波长(Ex)以利于检测。激发波长可通过荧光化合物的激发光谱来确定。激发光谱的具体检测办法是通过扫描激发单色器,使不同波长的入射光激发荧光化合物,产生的荧光通过固定波长的发射单色器,由光检测元件检测。最终得到荧光强度对激发波长的关系曲线
荧光检测器的概述
定义 荧光检测器(Fluorescence Detector,简称FLD)是 高压液相色谱仪常用的一种检测器。用 紫外线照射色谱馏分,当试样组分具有荧光性能时,即可检出。 特点 选择性高,只对荧光物质有响应;灵敏度也高,最低检出限可达10-12ug/ml,适合于多环芳烃及各种荧光物质的痕量
荧光检测器定量基础
在光致发光中,发射出的辐射总依赖于所吸收的辐射量。由于一个受激发的分子回到基态时可能以无辐射跃迁的形式产生能量损失,因而发射辐射的光子数通常都少于吸收辐射的光子数,它以量子效率Q来表示。 在固定的实验条件下,量子效率是个常数,通常Q小于1。对可用荧光检测的物质来说,Q值一般在0.1~0.9之间
荧光检测器的使用
1、将荧光剂按一定比例加入到系统内,加入荧光剂后向系统内补充适量的冷媒以便把荧光剂安全推入系统内。 2、系统运行20分钟以后便可戴上专用眼镜,用检漏仪照射系统的外部,泄漏点呈明亮的黄色。 3、如漏点极小,建议你隔一天用紫光灯仔细检查系统管路。 4、如果有些地方看不到,你可以用一个反光镜,放
荧光检测器的缺点
①荧光检测器的高选择性优点在一些情况下,也是该检测器的缺点。因为不是所有的化合物在选择的条件下都能发生荧光,所以荧光检测器不属于通用型检测器,与紫外-可见光检测器相比,应用范围较窄。 ②对通常发生在荧光测量中的一些干扰非常敏感,如背景荧光和猝灭效应等。虽然这些干扰在液相分析中不经常遇到,但在进
原子荧光产生的方式
气态自由原子吸收特征波长辐射后,原子的外层电子从基态或低能级跃迁到高能级经过约10-8s,又跃迁至基态或低能级,同时发射出与原激发波长相同或不同的辐射,称为原子荧光。原子荧光分为共振荧光、直跃荧光、阶跃荧光等。
原子荧光怎么产生的
气态自由原子吸收特征波长辐射后,原子的外层电子从基态或低能级跃迁到高能级经过约10-8s,又跃迁至基态或低能级,同时发射出与原激发波长相同或不同的辐射,称为原子荧光。原子荧光分为共振荧光、直跃荧光、阶跃荧光等。
产生x射线荧光的原理
处于激发态的原子,要通过电子跃迁向较低的能态转化,同时辐射出被照物质的特征X射线,这种由入射X射线激发出的特征X射线,称为荧光X射线,此种辐射又称为荧光辐射。当紫外光或波长较短的可见光照射到某些物质时,这些物质会发射出各种颜色和不同强度的可见光,而当光源停止照射时,这种光线随之消失。这种在激发光诱导
荧光效应的产生机理
产生荧光的两个必要条件: 第一个必要条件是该物质的分子必须具有能吸收激发光的结构,通常是共轭双键结构; 第二个条件是该分子必须具有一定程度的荧光效率。 所谓荧光效率是荧光物质吸光后所发射的荧光量子数与吸收的激发光的量子数的比值。 荧光产生原理,当紫外光或波长较短的可见光照射到某些物质时,
荧光分析法荧光相关术语概念
根据波兹曼 (Boltzmann)分布,分子在室温时基本上处于 电子能级的基态。当吸收了紫外-可见光后,基态分子中的电子只能跃迁到激发单重态的各个不同振动-转动能级,根据自旋禁阻选律, 不能直接跃迁到激发三重态的各个振动-转动能级。处于激发态的分子是不稳定的,通常以辐射跃迁和无辐射跃迁等方式释放多余
荧光假单胞菌的相关介绍
荧光假单胞菌为革兰氏阴性单端丛毛菌,专性需氧,具有嗜低温性,其最适生长温度为25-30℃,4℃可生长,35℃以上不生长。荧光假单胞菌广泛分布于水、土壤及正常人体皮肤等部位。 该菌产生在紫外线照射下发出黄绿色荧光的荧光素,不产生绿脓素。该菌是一种环境污染菌,为少见的条件致病菌。可从脓、痰、胸水、
x荧光测厚仪原理相关知识介绍
x荧光测厚仪的原理:若一个电子由轨道游离,则其他能阶的电子会自然的跳至他的位置,以达到稳定的状态,此种不同能阶转换的过程可释放出能量,即X-射线。因为各元素的每一个原子的能阶均不同,所以每一元素轨道间的能阶差也不同相同。 原子的特性由原子序来决定,亦即质子的数目或轨道中电子的数目,即特定的X-射线
X射线荧光分析技术相关介绍
X光荧光分析又称X射线荧光分析(XRF)技术,即是利用初级X射线光子或其他微观粒子激发待测样品中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学形态研究的方法。 X射线是一种电磁辐射,按传统的说法,其波长介于紫外线和γ射线之间,但随着高能电子加速器的发展,电子轫致辐射所产生的X射线的
X射线荧光分析的相关介绍
确定物质中微量元素的种类和含量的一种方法。它用外界辐射激发待分析样品中的原子,使原子发出标识X射线(荧光),通过测量这些标识X射线的能量和强度来确定物质中微量元素的种类和含量。根据激发源的不同,可分成带电粒子激发X荧光分析,电磁辐射激发X荧光分析和电子激发X荧光分析。
X射线荧光仪的相关介绍
X射线荧光仪一般是采用,激发样品中的目标元素,使之产生特征X射线,通过测量特征X射线的照射量率来确定目标元素及其含量的仪器。 仪器分为室内分析、野外便携式和X射线荧光测井仪三种类型。各种类型的仪器均由探测器和操作台两部分组成。由于目前使用的探测器(正比计数管及闪烁计数器)能量分辨率不高,不能区
FLIPR荧光检测法的相关介绍
近年来,光学测定技术在美、英两国研究人员在高通量筛选检测中,努力进行了光学测定方法的研究,建立了大量的非同位素标记测定法,如用分光光度检测法筛选蛋白酪氨酸激酶抑制剂、组织纤溶酶原激活剂等,均获得成功。 放射性检测技术美国学者GanieSM在高通量药物筛选研究中,应用放射性测定法,特别是亲和闪烁
关于荧光检测器的基本概念介绍
荧光检测器是一种高灵敏度、有选择性的检测器,可检测能产生荧光的化合物。某些不发荧光的物质可通过化学衍生化生成荧光衍生物,再进行荧光检测。其最小检测浓度可达0.1ng/ml,适用于痕量分析;一般情况下荧光检测器的灵敏度比紫外检测器约高2个数量级,但其线性范围不如紫外检测器宽。近年来,采用激光作为荧
关于荧光检测器的定量基础的介绍
在光致发光中,发射出的辐射总依赖于所吸收的辐射量。由于一个受激发的分子回到基态时可能以无辐射跃迁的形式产生能量损失,因而发射辐射的光子数通常都少于吸收辐射的光子数,它以量子效率Q来表示。 在固定的实验条件下,量子效率是个常数,通常Q小于1。对可用荧光检测的物质来说,Q值一般在0.1~0.9之间
激发光谱荧光检测器的介绍
荧光属于光致发光,需选择合适的激发光波长(Ex)以利于检测。激发波长可通过荧光化合物的激发光谱来确定。激发光谱的具体检测办法是通过扫描激发单色器,使不同波长的入射光激发荧光化合物,产生的荧光通过固定波长的发射单色器,由光检测元件检测。最终得到荧光强度对激发波长的关系曲线就是激发光谱。在激发光谱曲
原子荧光光谱的产生过程介绍
气态自由原子吸收光源的特征辐射后,原子的外层电子跃迁到较高能级,然后又跃迁返回基态或较低能级,同时发射出与原激发波长相同或不同的发射即为原子荧光。原子荧光是光致发光,也是二次发光。当激发光源停止照射之后,再发射过程立即停止。
VWD检测器是不是荧光检测器
液相色谱仪的VWD是紫外检测器。它是安捷伦紫外检测器的名称,其波长调整范围较小,是紫外检测器的其中一种。拓展荧光检测器特点选择性高,只对荧光物质有响应;灵敏度也高,最低检出限可达10-12ug/ml,适合于多环芳烃及各种荧光物质的痕量分析。也可用于检测不发荧光但经化学反应后可发荧光的物质。如在酚类分
VWD检测器是不是荧光检测器
VWD不是荧光检测器,是紫外检测器,紫外检测器的名字,它的波长调整范围较小,是紫外检测器的一种。下面是一些检测器的名称● 可变波长扫描紫外检测器(VWD)波长范围:190〜600nm● 多波长检测器(MWD)波长范围:190〜950nm(双灯源)● 二极管阵列检测器(DAD)波长范围:190〜950
X射线荧光光谱仪荧光光谱的相关介绍
能量色散X射线荧光光谱采用脉冲高度分析器将不同能量的脉冲分开并测量。能量色散X射线荧光光谱仪可分为具有高分辨率的光谱仪,分辨率较低的便携式光谱仪,和介于两者之间的台式光谱仪。高分辨率光谱仪通常采用液氮冷却的 半导体探测器,如Si(Li)和高纯锗探测器等。低分辨便携式光谱仪常常采用正比计数器或闪烁
荧光光谱仪三维荧光分析的相关介绍
三维荧光分析。普通荧光分析所得的光谱是二维谱图,而描述荧光强度同时随激发和发射波长变化的关系谱图,就是三维荧光光谱。它可以提供比常规荧光光谱和同步荧光光谱更为完整的光谱信息,是很有价值的光谱指纹技术。三维荧光光谱可以作为光谱指纹技术在环境监测(溶解有机质的分布等)、临床化学(根据癌细胞荧光代谢产
荧光检测器的检测原理
化合物受紫外光激发后,发射出比激发光波长更长的光,称为荧光; 荧光强度 (F) 与激发光强度 (I0) 及荧光物质浓度 (C) 之间的关系为:F=2.3QKI0εCl F=KC Q为量子产率,K为荧光效率,ε为摩尔吸光系数,l为光径长度。
荧光检测器的定量基础
在光致发光中,发射出的辐射总依赖于所吸收的辐射量。由于一个受激发的分子回到基态时可能以无辐射跃迁的形式产生能量损失,因而发射辐射的光子数通常都少于吸收辐射的光子数,它以量子效率Q来表示。 在固定的实验条件下,量子效率是个常数,通常Q小于1。对可用荧光检测的物质来说,Q值一般在0.1~0.9之间
荧光检测器的工作原理
荧光检测器的工作原理是:用紫外光照射某些化合物时它们可受激发而发出荧光,测定发出的荧光能量即可定量。很多与生命科学有关的物质,如氨基酸、胺类、维生素、甾族化合物及某些代谢药物都可以用荧光法检测。荧光检测器在生物样品痕量分析中很有用,尤其在用荧光衍生剂后,可以检测很微量的氨基酸和肽。
荧光检测器的优缺点
优点: ①灵敏度极高。荧光检测器的灵敏度比紫外-可见光检测器的灵敏度约高两个数量级,最小检测量可达10^(-13g)。这是因为在紫外吸收检测法中,被检测的信号A=lg(Io/I),即当样品浓度很低时,检测器所检测的是两个较大信号Io及I的微小差别;而在荧光检测法中,被检测的是叠加在很小背景上的
流通池荧光检测器
成果简介 采用正交光学结构,以小功率发光二极管为光源,AccuOpt2000光电放大器为荧光接收放大器件。采用直通纺锤型流通池采用直通纺锤型流通池(池体积 28 μL、耐压3 MPa),提高检测灵敏度。全部采用国产滤光片,其性能达到国外名牌产品的 技术水平。整机模块化设计,可与 HPLC、F
荧光检测器发射光谱
般所说的荧光光谱,实际上仅指荧光发射光谱。它是在激发单色器波长固定时,发射单色器进行波长扫描所得的荧光强度随荧光波长(即发射波长,Em)变化的曲线。荧光光谱可供鉴别荧光物质,并作为荧光测定时选择合适的测定波长的依据。 另外,由于荧光测量仪器的特性,使光源的能量分布、单色器的透射率和检测器的响应