红外吸收光谱测绘时,对固体试样的制样有何要求
(1)试样应为单一组分的纯物质,纯度>98%,通常在分析前,样品需要纯化; 对于GC-FTIR则无此要求。(2)试样不应含有游离水(水可产生红外吸收且可侵蚀盐窗);(3)试样浓度或厚度应适当,以使T在合适范围10%-80%。物质结构测定一般要求物质的纯度在98%以上,因为杂质也有其吸收谱带,可在光谱上出现。不纯物质的红外光谱吸收带较纯品多,或若干吸收线相互重叠,不能分清,可用比较提纯前后的红外光谱来了解物质提纯过程中杂质的消除情况。......阅读全文
红外测试吸收峰偏移说明什么
说明结构有变化。具体是哪个位置的,哪个官能团变化,要参考变化的吸收峰对应的是哪个结构(例如甲基和亚甲基有不同的吸收峰位置);同时对比前后变化的趋势,也可以分析该结构是如何变化的(取代,还是键长增加,还是转动)。
红外吸收峰的强弱代表什么
在不考虑相邻基因相互影响的前提下,键的偶极距越大,伸缩振动过程中偶极距的变化也越大,其吸收峰的强度亦愈强。
紫外吸收光谱和红外吸收光谱的异同点
紫外吸收光谱:电子能级间的跃迁红外吸收光谱:振动能级间的跃迁
紫外吸收光谱和红外吸收光谱的异同点
紫外吸收光谱:电子能级间的跃迁红外吸收光谱:振动能级间的跃迁
红外吸收光谱与紫外可见吸收光谱的区别
紫外、可见吸收光谱常用于研究不饱和有机物,特别是具有共轭体系的有机化合物,而红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没有偶极矩变化的振动在拉曼光谱中出现)。因此,除了单原子和同核分子如Ne、He、O2、H2等之外,几乎所有的有机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚
红外吸收光谱与紫外可见吸收光谱的区别
一、两者的原理不同:1、紫外分光光度计的原理:物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同。因此,每种物质就有其特有的、固定的
红外吸收光谱与紫外可见吸收光谱的区别
一、两者的原理不同:1、紫外分光光度计的原理:物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同。因此,每种物质就有其特有的、固定的
红外吸收光谱与紫外可见吸收光谱的区别
一、两者的原理不同:1、紫外分光光度计的原理:物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同。因此,每种物质就有其特有的、固定的
关于红外吸收光谱的内容介绍
利用红外光谱对物质分子进行的分析和鉴定。将一束不同波长的红外射线照射到物质的分子上,某些特定波长的红外射线被吸收,形成这一分子的红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,据此可以对分子进行结构分析和鉴定。红外吸收光谱是由分子不停地作振动和转动运动而产生的,分子振动是指分子
乙酸红外光谱中有几个振动吸收?
大致有形成氢键的-OH的伸缩振动;C=O的伸缩振动;C-O键的伸缩振动;-OH的面外变形振动.
红外吸收光谱仪的结构
光源 红外光源应是能够发射高强度的连续红外光的物体。常用的有以下光源名称适用波长范围/cm-1说明能斯特(Nernst))灯5000-400ZrO2 ,THO2等烧结而成碘钨灯10000-5000硅碳灯5000-200FTIR,需用水冷或风冷炽热镍铬丝圈5000-200风冷高压汞灯
红外吸收光谱的原理和用途
工作原理红外吸收光谱是由分子不停地作振动和转动运动而产生的,分子振动的能量与红外射线的光量子能量正好对应,因此当分子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分子而振动而产生红外吸收光谱。用途可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法,利用化学键的特征波数来鉴别
红外光谱吸收峰高低代表什么
吸收峰越高,代表你所得到的材料在该波长(峰所对应的位置)对红外光的吸收比较强烈,或者说是材料中原子的电子被较多激发。
红外吸收检测仪的原理简介
仪器通过对大气痕量气体成分的红外辐射 “指纹” 特征吸收光谱测量与分析,实现对多组分气体的定性和定量在线自动监测。 其工作原理为光谱仪的光学镜头接收来自红外光源发射的红外辐射,辐射的红外线在开放或密闭的空气中传播. 光谱仪接收到的红外辐射后,经由干涉仪的调制被红外探测器检测,再由光谱仪的电子
羧基和羟基的红外吸收峰位置
羟基的伸缩振动是3600cm-1 左右,一般由于形成氢键还会红移,弯曲振动在醇酚中是1410-1260(s),谱图如果1250处有峰可能是氧化物中的金属与氧键连接的峰。可能的话建议对比一下,还有就是看看指纹区的变化。
红外光谱吸收峰高低代表什么
吸收峰越高,代表你所得到的材料在该波长(峰所对应的位置)对红外光的吸收比较强烈,或者说是材料中原子的电子被较多激发。
羧基和羟基的红外吸收峰位置
一分钟了解羟基的红外吸收峰位置 羟基的伸缩振动是3600cm-1 左右,一般由于形成氢键还会红移,弯曲振动在醇酚中是1410-1260(s),谱图如果1250处有峰可能是氧化物中的金属与氧键连接的峰。可能的话建议对比一下,还有就是看看指纹区的变化。
羧基和羟基的红外吸收峰位置
一分钟了解羟基的红外吸收峰位置 羟基的伸缩振动是3600cm-1 左右,一般由于形成氢键还会红移,弯曲振动在醇酚中是1410-1260(s),谱图如果1250处有峰可能是氧化物中的金属与氧键连接的峰。可能的话建议对比一下,还有就是看看指纹区的变化。
近红外水分仪的吸收原理
近红外水分仪是根据近红外波长会被水分子吸收的原理,分析某特定波长的近红外能量变化。 水分子不是静止的:当遇到特定的能量带时,它们会振动。水分子中两个氢原子与氧原子的键会伸展、收缩、或以其它形态扭曲。需要外来的能量引起这些振动,需要的能量遍及整个电磁光谱的特定波段。在整个光谱的不同部位,有一些吸
苯甲酸红外吸收光谱的测定
苯甲酸红外吸收光谱的测定试剂:苯甲酸粉末、光谱纯KBr粉末。 1、将所有的膜具用酒精擦拭干净,用电吹风先烘干,再在红外灯下烘烤;用电子天平称量一定量的KBr粉末(每份约200mg),在红外灯下研钵中加入KBr进行研磨,直至KBr粉末颗粒足够小(注意KBr粉末的干燥)2、将KBr苯甲酸的红外光谱测定实
红外光谱吸收峰高低代表什么
吸收峰越高,代表你所得到的材料在该波长(峰所对应的位置)对红外光的吸收比较强烈,或者说是材料中原子的电子被较多激发。
快速了解亚甲基的红外吸收峰
2700-3100一般是甲基、亚甲基及次甲基的伸缩振动
羧基和羟基的红外吸收峰位置
一分钟了解羟基的红外吸收峰位置 羟基的伸缩振动是3600cm-1 左右,一般由于形成氢键还会红移,弯曲振动在醇酚中是1410-1260(s),谱图如果1250处有峰可能是氧化物中的金属与氧键连接的峰。可能的话建议对比一下,还有就是看看指纹区的变化。
红外光谱法的特点和产生红外吸收的条件
红外光谱法的特点:特征性强、测定快速、不破坏试样、试样用量少、操作简便、能分析各种状态的试样、分析灵敏度较低、定量分析误差较大。产生红外吸收的条件:1、辐射后具有能满足物质产生振动跃迁所需的能量。2、分子振动有瞬间偶极距变化。当分子振动引起分子偶极矩变化时,就能形成稳定的交变电场,其频率与分子振动频
红外光谱法的特点和产生红外吸收的条件
红外光谱法的特点:特征性强、测定快速、不破坏试样、试样用量少、操作简便、能分析各种状态的试样、分析灵敏度较低、定量分析误差较大。产生红外吸收的条件:1、辐射后具有能满足物质产生振动跃迁所需的能量。2、分子振动有瞬间偶极距变化。当分子振动引起分子偶极矩变化时,就能形成稳定的交变电场,其频率与分子振动频
红外吸收光谱主要的吸收峰?各表征哪些官能团
紫外无吸收,表明该化合物中没有存在共轭体系。在3000左右的峰表明该化合物中可能有:炔h、烯氢、醛基h或烷基h;1650左右的吸收峰,则表明体系中存在羰基c=o,可能是酸、醛酮、酰胺、酯或酸酐之类的
红外光谱怎么看有几种吸收峰
3250-3500cm-1一般是-NH,-NH2以及-OH的伸缩振动,当然,如果没有这些基团而在3400有峰说明样品吸潮,这是水峰2700-3100一般是甲基、亚甲基及次甲基的伸缩振动2400-2600是铵盐伸缩振动2200-2300这个位置的吸收峰只有2种,炔基或者氰基,吸收峰强度中等1650-1
红外光谱怎么看有几种吸收峰
3250-3500cm-1一般是-NH,-NH2以及-OH的伸缩振动,当然,如果没有这些基团而在3400有峰说明样品吸潮,这是水峰2700-3100一般是甲基、亚甲基及次甲基的伸缩振动2400-2600是铵盐伸缩振动2200-2300这个位置的吸收峰只有2种,炔基或者氰基,吸收峰强度中等1650-1
红外光谱怎么看有几种吸收峰
3250-3500cm-1一般是-NH,-NH2以及-OH的伸缩振动,当然,如果没有这些基团而在3400有峰说明样品吸潮,这是水峰2700-3100一般是甲基、亚甲基及次甲基的伸缩振动2400-2600是铵盐伸缩振动2200-2300这个位置的吸收峰只有2种,炔基或者氰基,吸收峰强度中等1650-1
红外光谱怎么看有几种吸收峰
3250-3500cm-1一般是-NH,-NH2以及-OH的伸缩振动,当然,如果没有这些基团而在3400有峰说明样品吸潮,这是水峰2700-3100一般是甲基、亚甲基及次甲基的伸缩振动2400-2600是铵盐伸缩振动2200-2300这个位置的吸收峰只有2种,炔基或者氰基,吸收峰强度中等1650-1