宁波材料所在富锂锰基正极材料研究上取得系列进展
目前,电动汽车面临续航里程短和安全性不足等问题,制约了其大规模推广。如果电动汽车拥有与燃油车相当的续航里程,消费者驾驶电动汽车时将不再有里程焦虑,有利于实现电动汽车的大规模推广。在目前已知的正极材料中,富锂锰基正极材料放电比容量高达300mAh/g,是当前商业化应用磷酸铁锂和三元材料等正极材料放电比容量的两倍左右。因此,富锂锰基正极材料被认为是新一代高能量密度动力锂电池的理想之选,更是动力锂电池能量密度突破400Wh/kg的技术关键。近十年来,中国科学院宁波材料技术与工程研究所动力锂电池工程实验室研究员刘兆平团队长期致力于富锂锰基正极材料的研究开发,围绕降低富锂锰基正极材料的首次不可逆容量、循环过程中电压衰减和氧析出等关键科学问题开展了研究并取得系列研究结果。 近期,研究团队对富锂锰基正极材料中镍钴元素与氧活性关系以及富锂锰基正极材料的改性优化开展了深入研究,取得了系列进展。首先,他们与美国加州大学圣地亚哥分校研究人员合作......阅读全文
磷酸铁锂正极材料的技术优势
与传统的锂离子二次电池正极材料,尖晶石结构的LiMn2O4和层状结构的LiCoO2相比,LiMPO4的原物料来源更广泛、价格更低廉且无环境污染。与其他正极材料相比,磷酸铁锂(LFP)则显现出较综合的优势: 1、安全性能突出 磷酸铁锂晶体中的P-O键稳固,难以分解,即便在高温或过充
模板法制备镍钴锰三元正极材料
模板法凭借其空间限域作用和结构导向作用,在制备具有特殊形貌和精确粒径的材料上有着广泛应用。 纳米多孔的333型粒子一方面可以极大缩短锂离子扩散路径,另一方面电解液可以浸润至纳米孔中为Li+扩散增加另一通道,同时纳米孔还可以缓冲长循环材料体积变化,从而提高材料稳定性。以上这些优点使得333型在水
过程工程所开发新型钠离子电池聚阴离子磷酸盐正极材料
钠离子电池因其原料丰富、价格低廉,且与锂离子电池技术高度兼容等诸多优点,已成为下一代大规模储能系统最有潜力的电池技术之一。近日,过程工程所绿色化工研究部赵君梅研究员团队与四川大学磷基功能材料与新能源实验室、中国科学院物理研究所清洁能源团队合作,在钠离子电池聚阴离子磷酸盐正极的组成设计和性能优化方
新型钠离子电池聚阴离子型磷酸盐正极材料的开发研究
钠离子电池因其原料丰富、价格低廉,且与锂离子电池技术高度兼容等优点,成为下一代大规模储能系统最有潜力的电池技术之一。近日,中国科学院过程工程研究所绿色化工研究部研究员赵君梅团队与四川大学磷基功能材料与新能源实验室、中科院物理研究所清洁能源团队合作,在钠离子电池聚阴离子磷酸盐正极的组成设计和性能优
关于锂电材料锂锰氧化物的介绍
锂锰氧化物是传统正极材料的改性物,目前应用较多的是尖晶石型LixMn204,它具有三维隧道结构,更适宜锂离子的脱嵌。锂锰氧化物原料丰富、成本低廉、无污染、耐过充性及热安全性更好,对电池的安全保护装置要求相对较低,被认为是最具有发展潜力的锂离子电池正极材料。Mn溶解、Jahn-Telle效应及电解
磷酸钴锂正极材料制备的具体步骤
(1)将聚偏氟乙烯加入N-甲基吡咯烷酮中,搅拌至完全溶解,然后加入改性多壁碳纳米管,超声分散28min,再加入磷酸锂、四氧化三钴、三氧化二铁,转移至球磨罐中进行球磨;各原料的重量份为,聚偏氟乙烯1重量份、N-甲基吡咯烷酮69重量份、改性多壁碳纳米管5重量份、磷酸锂10重量份、四氧化三钴12重量份、三
磷酸锂铁电池正极材料生产方基本介绍
这些工艺都有各自的优缺点,但目前通过改良工艺后,应用比较广泛的还是前3种,美国的A123和加拿大的Phostech公司采用固相法,美国的Valence公司采用碳热还原法,LG化学利用连续水热合成法。 在材料制备过程中,导电碳包覆是LiFePO2制备过程中的一项关键技术。A123通过在箔体表面预
新型钠离子电池聚阴离子型磷酸盐正极材料被开发
钠离子电池因其原料丰富、价格低廉,且与锂离子电池技术高度兼容等优点,成为下一代大规模储能系统最有潜力的电池技术之一。近日,中国科学院过程工程研究所绿色化工研究部研究员赵君梅团队与四川大学磷基功能材料与新能源实验室、中科院物理研究所清洁能源团队合作,在钠离子电池聚阴离子磷酸盐正极的组成设计和性能优
电工所制备出锂硫电池新型多级次石墨烯基碳硫正极材料
日前,中国科学院电工研究所研究员马衍伟团队设计开发出一种具有多级次微观结构的新型石墨烯-多孔碳球复合纳米材料。该碳复合材料兼具石墨烯纳米片和多孔碳纳米球的优点,具有3182 m2 g-1的超高比表面积和1.93 cm3 g-1的大孔隙率。基于这种碳纳米材料,电工所制备出了高性能锂硫电池正极。
溶胶凝胶法制备镍钴锰三元正极材料
溶胶凝胶法(sol-gel)最大优点是可在极短时间内实现反应物在分子水平上均匀混合,制备得到的材料具有化学成分分布均匀、具有精确的化学计量比、粒径小且分布窄等优点。 MEI等采用改良的sol-gel法:将柠檬酸和乙二醇加入到一定浓度锂镍钴锰硝酸盐溶液中形成溶胶,然后加入适量的聚乙二醇(PEG-
关于充放电测试常规实验流程介绍
将测试电池安装在测试仪器上,置于(25±1)℃ 测试环境中。设置以下程序:静置10 min;以1.0 C电流恒流充电至4.2 V,然后恒压充电至电流下降至0.05 C,充电停止;静置5 min;然后以1.0 C 电流恒 流放电至3.0 V;重复上述充放电步骤5~10次。 上述测试参数为常规全电
锂离子电池的正极材料的研发简介
镍钴锰、镍钴铝三元材料的研发主要是提升材料的体积比能量、提高低温性能、改善电池的安全性;通过调整材料的组成比例实现性能的调控。为了继续提升电池的能量密度,正极材料将向硅酸盐复合材料、层状富锂锰基材料、硫基材料发展;向更高嵌锂容量且性能良好锂脱嵌的可逆性材料方向发展。材料结构研究倾向于层状结构和尖
动力型镍钴锰酸锂材料的相关介绍
一直以来,动力电池的路线存在很大争议,因此磷酸铁锂、锰酸锂、三元材料等路线都有被采用。国内动力电池路线以磷酸铁锂为主,但随着特斯拉火爆全球,其使用的三元材料路线引起了一股热潮。 磷酸铁锂虽然安全性高,但其能量密度偏低软肋无法克服,而新能源汽车要求更长的续航里程,因此长期来看,克容量更高的材料将
锂电池的正极磷酸铁锂材料的简介
锂电池的正极为磷酸铁锂材料。这种新材料不是以往的锂电池正极材LiCoO2;LiMn2O4;LiNiMO2。其安全性能与循环寿命是其它材料所无法相比的,这些也正是动力电池最重要的技术指标。1C充放循环寿命达2000次。单节电池过充电压30V不燃烧,不爆炸。穿刺不爆炸。磷酸铁锂正极材料做出大容量锂电
高能动力电池是怎样炼成的
中国科学院院士欧阳明高在学术会议上表示,我国400瓦时/公斤的单体电池有望在2025年实现产业化,这一时间表引起行业热议,目前特斯拉最新动力电池20700高性能钴酸锂电池能量为333瓦时/公斤,这意味着我国在动力电池领域有望从“跟跑”变“领跑”。 被欧阳明高点名的科研项目获得了国家重点研发计划
喷雾干燥法制备镍钴锰三元正极材料
喷雾干燥法因自动化程度高、制备周期短、得到的颗粒细微且粒径分布窄、无工业废水产生等优势,被视为是应用前景非常广阔的一种生产三元材料的方法。 OLJACA等采用喷雾干燥法制备了组成为333三元材料,在60~150℃高温下,镍钴锰锂硝酸盐迅速雾化,在短时间内水分蒸发,原料也迅速混匀,最后得到的粉末
镍钴锰三元正极材料制备固相法介绍
三元材料创始人OHZUKU最初就是采用固相法合成333材料,传统固相法由于仅简单采用机械混合,因此很难制备粒径均一电化学性能稳定的三元材料。为此,HE等、LIU等采用低熔点的乙酸镍钴锰,在高于熔点温度下焙烧,金属乙酸盐成流体态,原料可以很好混合,并且原料中混入一定草酸以缓解团聚,制备出来的333
锂锰电池的概念
锂锰电池一般指锂二氧化锰电池。锂二氧化锰电池是指以锂为负极,二氧化锰为正极的一类电池。二氧化锰电池低倍率和中倍率放电性能好,价格便宜,安全性能好,与常规电池有竞争力,所以是首先商品化的一种锂电池。
锂锰电池的定义
锂锰电池一般指锂二氧化锰电池。锂二氧化锰电池是指以锂为负极,二氧化锰为正极的一类电池。二氧化锰电池低倍率和中倍率放电性能好,价格便宜,安全性能好,与常规电池有竞争力,所以是首先商品化的一种锂电池。
锂锰电池的定义
锂锰电池一般指锂二氧化锰电池。锂二氧化锰电池是指以锂为负极,二氧化锰为正极的一类电池。二氧化锰电池低倍率和中倍率放电性能好,价格便宜,安全性能好,与常规电池有竞争力,所以是首先商品化的一种锂电池。
锂锰电池的定义
锂锰电池一般指锂二氧化锰电池。锂二氧化锰电池是指以锂为负极,二氧化锰为正极的一类电池。二氧化锰电池低倍率和中倍率放电性能好,价格便宜,安全性能好,与常规电池有竞争力,所以是首先商品化的一种锂电池。
合肥工业大学研发电池电极材料取得新进展
近日,合肥工业大学一项科研成果采用新颖的软化学合成方法,提出了先进的材料制备工艺,通过对电极材料的研究实现了锂离子电池性能的突破,为电动车和电网蓄电等应用项目提供更优化的选择,相关研究成果发表在国际化学领域的顶级刊物《德国应用化学》上。 该校化学与化工学院张卫新教授课题组与香港科技大学杨世和教
动力锂电池采用高容量正极材料的介绍
正极材料的容量和电压是限制电池能量密度最重要的因素,正极材料的质量占到单体电池的40%~45%,因此采用高工作电压和高容量的正极材料能够显著提升电池的能量密度。 三元镍钴锰酸锂(NCM)材料可通过调配镍、钴、锰三者比例,从而获得不同材料特性,目前三元锂离子电池重要应用是NCM111和NCM52
钾离子电池水系电解液最新进展
近日,中国科学院物理研究所/北京凝聚态物理国家研究中心清洁能源重点实验室E01组博士生蒋礼威在胡勇胜研究员和陆雅翔副研究员的指导下,成功构建了一款水系钾离子全电池,提出了利用Fe部分取代Mn的富锰钾基普鲁士蓝KxFeyMn1-y[Fe(CN)6]w·zH2O为正极、有机染料苝艳紫红29 (PTC
锂电池材料尖晶石锰酸锂的优点介绍
尖晶石锰酸锂LiMn2O4(LMO)材料的主要优点是原料资源丰富、成本低、电池安全性好;其公认的主要缺点是电池比能量低,同时循环稳定性欠佳。上世纪90年代开始,受其原料及工艺成本低、安全性好的吸引,人们探索了LMO在电动大巴、乘用轿车、特种车辆、电动工具等领域的应用。传统的固相烧结制备技术无法实
生产锂电池主要用到哪些原材料
锂电池生产需要用到哪些原材料?锂电池主要由正极材料、负极材料、隔膜和电解液等构成,正极材料在锂电池的总成本中占据40%以上的比例,并且正极材料的性能直接影响了锂电池的各项性能指标,所以锂电正极材料在锂电池中占据核心地位。1.正极材料在正极材料当中,最常用的材料有钴酸锂,锰酸锂,磷酸铁锂和三元材料(镍
水系钾离子电池研究取得进展
近日,中国科学院物理研究所/北京凝聚态物理国家研究中心清洁能源重点实验室E01组博士生蒋礼威在研究员胡勇胜和副研究员陆雅翔的指导下,成功构建了一款水系钾离子全电池,提出利用Fe部分取代Mn的富锰钾基普鲁士蓝KxFeyMn1-y[Fe(CN)6]w·zH2O为正极、有机染料苝艳紫红29 (PTCD
科学家发现钠离子电池正极材料电压滞后原因
原文地址:http://news.sciencenet.cn/htmlnews/2023/7/504893.shtm钠离子电池中的富锰基钠超离子导体(NASICON)型正极材料,因电压高、原材料丰富具有潜在的应用前景。但因充电/放电曲线存在明显的电压滞后,导致可逆容量较低,从而阻碍了其应用。中国科学
磷酸铁锂/钴酸锂/锰酸锂/三元材料的锂电池的技术特点
锂电池是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。锂离子电池以碳素材料为负极,以含锂的化合物为正极,根据正极化合物不同,常见的锂离子电池有钴酸锂、锰酸锂、磷酸铁锂、三元锂等。那么以钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等为材料做成的电池各具那些优缺点?1、钴酸锂电池优点:钴酸锂具