实验室光谱仪器傅里叶变换红外光谱仪的基本构成
①光源:光源能发射出稳定、高强度连续波长的红外光,通常使用能斯特(Nernst)灯、碳化硅或涂有稀土化合物的镍铬旋状灯丝。②干涉仪:迈克尔逊干涉仪(Michelson interferometer)的作用是将复色光变为干涉光。中红外干涉仪中的分束器主要是由溴化钾材料制成的;近红外分束器一般以石英和 CaF2 为材料;远红外分束器一般由 Mylar 膜和网格固体材料制成。③检测器:检测器一般分为热检测器和光检测器两大类。热检测器是把某些热电材料的晶体放在两块金属板中,当光照射到晶体上时,晶体表面电荷的分布发生变化,由此可以测量红外辐射的功率。热检测器有氘代硫酸三甘肽(DTGS)、钽酸锂(LiTaO3)等类型。光检测器是利用材料受光照射后,由于导电性能的变化而产生信号,最常用的光检测器有锑化铟(InSb)、碲镉汞(MCT)等类型。......阅读全文
傅里叶变换红外光谱仪的操作步骤
1. 开机前准备 开机前检查实验室电源、温度和湿度等环境条件,当电压稳定,室温在15~25℃、湿度 ≤ 60%才能开机; 2. 开机 首先打开仪器的外置电源,稳定半小时,使得仪器能量达到最佳状态。开启电脑,并打开仪器操作平台OMNIC软件,运行Diagnostic菜单,检查仪器稳定性;
关于傅里叶变换红外光谱仪的简介
傅里叶变换红外光谱仪主要由迈克尔逊干涉仪和计算机组成。迈克尔逊干涉仪的主要功能是使光源发 出的光分为两束后形成一定的光程差,再使之复合以产生干涉,所得到的干涉图函数包含了光源的全部频率 和强度信息。用计算机将干涉图函数进行傅里叶变换,就可计算出原来光源的强度按频率的分布。 [1]它克服了色散型光
FTIR650傅里叶变换红外光谱仪
仪器简介: FTIR-650傅里叶变换红外光谱仪结合了光学、电子学、材料学及人工智能技术,所有细节无不体现设计的宗旨:操作简便,性能好、功能强大、智能操作、维护方便等特点,广泛地应用于医药、石油、化工、环保、食品、材料、国防、半导体、光学等领域,是实验室研究及常规应用分析的得力
FTIR650傅里叶变换红外光谱仪
仪器简介:FTIR-650傅里叶变换红外光谱仪结合了光学、电子学、材料学及人工智能技术,所有细节无不体现设计的宗旨:操作简便,性能好、功能强大、智能操作、维护方便等特点,广泛地应用于医药、石油、化工、环保、食品、材料、国防、半导体、光学等领域,是实验室研究及常规应用分析的得力工具,是科研、生产不可或
傅里叶变换红外光谱仪谷类检测分析
近年来,少数造假者频频在陈旧大米中涂抹掺加植物油、矿物油,增加其亮度和光泽,冒充优质新鲜大米销售,严重危害消费者身心健康。张耀武等利用红外光谱对涂有和掺有矿物油的大米进行定性鉴别。将分离出含有矿物油的试样进行红外光谱测试,未出现 1745 cm-1脂 C=O 的伸缩振动吸收和1000~1300
实验室分析仪器傅里叶变换红外光谱仪工作原理及优点
以光栅作为色散元件的红外光谱仪,由于采用了狭缝,能量受到了严格限制,尤其在远红外区能量很弱,它的扫描速率很慢,一次全扫描约需数分钟,使得一些动态研究以及与其他仪器(如色谱)的联用发生了困难,加之它的灵敏度分辨率和准确度也较低,使它在许多方面都不能完全满足需要。随着光学、电子学尤其计算机技术的发展,2
荧光光谱仪基本构成
荧光光谱仪由光源、单色器(滤光片或光栅)、狭缝、样品室、信号检测放大系统和信号读出、记录系统组成。光源用来激发样品,单色器用来分离出所需要的单色光,信号检测放大系统用来把荧光信号转化为电信号,联结于放大装置上的读出装置用来显示或记录荧光信号。 下面介绍现用仪器(即法国Horiba Jobin Y
傅里叶变换红外光谱仪的工作原理介绍
傅里叶变换红外光谱仪,简称为傅里叶红外光谱仪,同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪; 主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和
傅里叶变换红外光谱仪的使用及维护
傅里叶变换红外光谱(Fourier Transforminfrared spectroscopy)简写为FTIR。傅里叶红外光谱法是通过测量干涉图和对干涉图进行傅里叶变化的方法来测定红外光谱。红外光谱的强度h(δ)与形成该光的两束相干光的光程差δ之间有傅里叶变换的函数关系。傅立叶变换测定红外光谱用于
傅里叶变换红外光谱仪的工作原理介绍
傅里叶变换红外光谱仪,简称为傅里叶红外光谱仪,同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪; 主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和定量分 析,广
关于傅里叶变换红外光谱仪的分类介绍
1、傅里叶变换红外光谱仪按光学系统分类: 光谱仪按照光学系统的不同可以分为色散型和干涉型,色散型光谱仪根据分光元件的不同,又可分为棱镜式和光栅式,干涉型红外光谱仪即傅里叶变换红外光谱仪(FTIR)。其中光栅式的优点是可以重复光谱响应,机械性能可靠,缺点是效率偏低,对偏振敏感;干涉型光谱仪的优点
关于傅里叶变换红外光谱仪的优点介绍
1、波数精度高 波数是红外定性分析的关键参数,因此仪器的波数精度非常重要。因为干涉仪的动镜可以被很精确地驱动,所以干涉图的变化很准确,同时动镜的移动距离是由He-Ne激光器的干涉条纹来测量的,从而保证了所测的光程差很准确。而现代He-Ne激光器的频率稳定度和强度稳定度都是非常高的,频率稳定度优
岛津红外光谱仪的原理设计和三大基本构成
岛津红外光谱仪是根据光的相干性原理设计的,因此是一种干涉型光谱仪,它主要由光源,干涉仪,检测器,计算机和记录系统组成,大多数傅立叶变换红外光谱仪使用了干涉仪,因此实验测量的原始光谱图是光源的干涉图,然后通过计算机对干涉图进行快速傅立叶变换计算,从而得到以波长或波数为函数的光谱图,因此,谱图称为傅
岛津红外光谱仪的原理设计和三大基本构成
岛津红外光谱仪是根据光的相干性原理设计的,因此是一种干涉型光谱仪,它主要由光源,干涉仪,检测器,计算机和记录系统组成,大多数傅立叶变换红外光谱仪使用了干涉仪,因此实验测量的原始光谱图是光源的干涉图,然后通过计算机对干涉图进行快速傅立叶变换计算,从而得到以波长或波数为函数的光谱图,因此,谱图称为傅
傅立叶变换显微红外光谱仪的构成
红外光谱仪以棱镜或光栅作为色散元件,由于采用了狭缝,使这类仪器的能量受到严格的限制,扫描时间慢,灵敏度、分辨率和准确度都较低。傅里叶变换红外光谱仪没有色散元件,主要由光源、迈克尔逊干涉仪、检测器、计算机和记录仪组成。 从红外光谱发出的红外光,经迈克尔逊干涉仪干涉调频后入射至样品,透过或反射后到
傅里叶变换红外光谱仪操作注意事项
傅里叶变换红外光谱仪是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领
傅里叶变换红外光谱仪扫描速度快
傅里叶变换红外光谱仪的扫描速度比色散型仪器快数百倍,而且在任何测量时间内都能获得辐射源的所有频率的全部信息,即所谓的“多路传输”。扫描速度的快慢主要由动镜的移动速度决定的,动镜移动一次即可采集所有信息。这一优点使它特别适合与气相色谱、高压液相色谱仪器联机使用,也可用于快速化学反应过程的跟踪及化学
傅里叶变换红外光谱仪波数精度高
波数是红外定性分析的关键参数,因此仪器的波数精度非常重要。因为干涉仪的动镜可以被很精确地驱动,所以干涉图的变化很准确,同时动镜的移动距离是由He-Ne激光器的干涉条纹来测量的,从而保证了所测的光程差很准确。而现代He-Ne激光器的频率稳定度和强度稳定度都是非常高的,频率稳定度优于5*10-10,
傅里叶变换红外光谱仪操作的注意事项
傅里叶变换红外光谱仪不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪, 主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成,可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、
傅里叶变换红外光谱仪操作的注意事项
傅里叶变换红外光谱仪不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪, 主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成,可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤
关于傅里叶变换红外光谱仪的结构组成介绍
傅里叶变换红外(Fourier Transform Infrared,FTIR)光谱仪主要由红外光源、分束器、干涉仪、样品池、探测器、计算机数据处理系统、记录系统等组成,是干涉型红外光谱仪的典型代表,不同于色散型红外仪的工作原理,它没有单色器和狭缝,利用迈克尔逊干涉仪获得入射光的干涉图,然后通过
傅里叶变换红外光谱仪的果蔬检测分析
傅里叶变换红外光谱仪的果蔬检测分析:果蔬中农药残留快速、高效的检测技术是当前食品安全控制关注的重大问题。用傅里叶红外光谱技术对敌百虫和辛硫磷两种农药的红外光谱进行了测量和分析,验证了FTIR/ATR技术快速检测蔬菜中有机磷农药残留的可行性,测定敌百虫的最低的检测限为0.2×10-6(体积分数),
关于傅里叶变换显微红外光谱仪的优点介绍
傅里叶变换显微红外光谱仪是日本生产的精密仪器。 1、高光通量:光谱范围7800-350 CM-1 2、高信噪比:优于 50,000:1 3、波数精度高:优于0.01 CM-1; 4、高分辨率:优于0.09 CM-1; 5、灵敏度:小于9.65×10-5ABS; 傅里叶变换显微红外光谱
实验室光谱仪器红外显微成像技术的基本原理
FTIR显微成像技术是对一个选定区域(几十微米到数十毫米)的每一个点(像素)进行红外光谱测定,然后用计算机技术将这些点的红外光谱按区域进行二维或三维图谱绘制。该成像技术依赖于三方面:①扫描:②空间编码和解码:③红外显微镜及多通道检测器。当进行红外成像时,首先根据不同检测目的选择相应的检测器,并选择感
关于傅里叶变换红外光谱仪的扫描速度的介绍
傅里叶变换红外光谱仪的扫描速度比色散型仪器快数百倍,而且在任何测量时间内都能获得辐射源的所有频率的全部信息,即所谓的“多路传输”。扫描速度的快慢主要由动镜的移动速度决定的,动镜移动一次即可采集所有信息。这一优点使它特别适合与气相色谱、高压液相色谱仪器联机使用,也可用于快速化学反应过程的跟踪及化学
关于傅里叶变换红外光谱仪的辨率的介绍
分辨率是红外光谱仪的主要性能指标之一,是指光谱仪对两个靠得很近的谱线的辨别能力。一般棱镜式红外分光光度计的分辨率在1000cm-1处为3cm-1。光栅式仪器在1000cm-1处可达0.2cm-1,而傅里叶变换红外光谱仪在整个光谱范围内可达0.1cm-1~0.005cm-1。它的分辨率与仪器的光程
光谱仪的构成
如图1-1所示 一台典型的光谱仪主要由一个光学平台和一个检测系统组成。包括以下几个主要部分:1. 入射狭缝: 在入射光的照射下形成光谱仪成像系统的物点。2. 准直元件: 使狭缝发出的光线变为平行光。该准直元件可以是一独立的透镜、反射镜、或直接集成在色散元件上,如凹面光栅光谱仪中的凹面光栅。3. 色散
实验室光谱仪器原子吸收光谱仪的基本构造
原子吸收光谱仪由光源、原子化器、分光器、检测系统等几部分组成。仪器结构示意图 光源光源的作用是发射被测元素的特征共振辐射。对光源的基本要求是:发射的共振辐射的半宽度要明显小于吸收线的半宽度,0.0005~0.002nm;发射锐线。辐射强度足够大,光谱纯度高,背景低,稳定性好,使用寿命长,便于操作维护
傅里叶变换红外光谱仪极高的灵敏度、光谱范围宽
极高的灵敏度 色散型红外分光光度计大部分的光源能量都损失在入口狭缝的刀口上,而傅里叶变换红外仪没有狭缝的限制,辐射通量只与干涉仪的平面镜大小有关,在同样的分辨率下,其辐射通量比色散型仪器大得多,从而使检测器接受的信噪比增大,因此具有很高的灵敏度,可达10-9~10-12g。由于此优点,使傅里叶
傅里叶变换红外光谱仪按使用场景分类
傅里叶变换红外光谱仪根据使用场景不同可分为专业型与多用途型。专业型傅里叶变换红外光谱仪包括了大气环境傅里叶红外光谱仪、太空星载傅里叶光谱仪、化学分析傅里叶红外光谱仪、车载遥感傅里叶变换红外光谱仪等;多功能傅里叶变换光谱仪可以实现多种物质的分析,通常用于实验室对相应样品进行分析。