实验室分析方法红外吸收光谱产生条件
分子在发生振动能级跃迁时,需要一定的能量,这个能量通常由辐射体系的红外光来供给。由于振动能级是量子化的,因此分子振动将只能吸收一定的能量,即吸收与分子振动能级间隔 E振的能量相应波长的光线。如果光量子的能量为EL=hυL(υL是红外辐射频率),当发生振动能级跃迁时,必须满足 E振=EL 分子在振动过程中必须有瞬间偶极矩的改变,才能在红外光谱中出现相对应的吸收峰,这种振动称为具有红外活性的振动。 例如CO2(4种振动形式)2349cm-1 、667cm-1......阅读全文
原子吸收光谱产生的因素
原子吸收光谱产生的因素是:__基态原子吸收特征辐射后跃迁到激发态所产生的_。
原子吸收光谱产生的原理
原理:当有辐射通过自由原子蒸气,且入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子就要从辐射场中吸收能量,产生共振吸收,电子由基态跃迁到激发态,同时伴随着原子吸收光谱的产生。区别:吸收光谱 入射辐射的频率等于原子中的电子由基态跃迁到较高能态所需要
紫外—可见吸收光谱的产生
4.1.1.1 分子光谱和电子光谱紫外—可见分光光度法是利用某些物质的分子对波长范围在200~800nm的电磁波的吸收作用来进行分析测定的一种方法。分子的紫外—可见吸收光谱是由价电子能级的跃迁而产生的。分子,甚至是最简单的双原子分子的光谱,也要比原子光谱复杂得多。这是由于在分子中,除了电子相对于原子
吸收光谱是怎样产生的
大多数是内能形式吸收光谱。另外是光合作用形式吸收光谱,比如植物。还有化学反应吸收光谱,比如太阳电池等。
紫外吸收光谱的产生原理
吸光物质分子吸收特定能量(波长)的电磁波(紫外光)产生分子的电子能级跃迁。电子跃迁类型1. 分子轨道有机分子中常见的分子轨道:σ轨道、π轨道和非键轨道 (未共用电子对n)分子轨道图如图22. 电子跃迁(transition)类型(1)σ~σ*跃迁:能级跃迁图由饱和键产生,能级差大,吸收光波波长短,吸
紫外—可见吸收光谱的产生
4.1.1.1 分子光谱和电子光谱紫外—可见分光光度法是利用某些物质的分子对波长范围在200~800nm的电磁波的吸收作用来进行分析测定的一种方法。分子的紫外—可见吸收光谱是由价电子能级的跃迁而产生的。分子,甚至是最简单的双原子分子的光谱,也要比原子光谱复杂得多。这是由于在分子中,除了电子相对于原子
紫外吸收光谱产生的原因
分子具有不同的特征能级,当分子从外界吸收能量后,就会发生相应的能级跃迁,产生吸收光谱。物质分子吸收一定波长的紫外光时,分子内电子发生跃迁,所产生的吸收光谱即为紫外吸收光谱。
实验室分析方法柱前衍生化的条件
首先,如果要是想在色谱中使用柱前衍生化,其衍生化反应应该满足以下几个条件:1、反应能迅速、定量的进行,反应重复性好,反应条件不苛刻,容易操作;2、反应的选择性高,最好只与目标化合物反应,即反应具有专一性;3、衍生化反应产物只有一种,反应的副产物和过量衍生化试剂不干扰目标化合物的分离与检测;4、衍生化
实验室分析方法核磁共振的共振条件
①:具有磁性的原子核。(γ:某种核的磁旋比)②:外加静磁场(H0)中)。③:一定频率(υ)的射频脉冲。④:公式:
霉菌毒素产生的条件是什么
1.霉菌具有高度的适应性,在非常宽泛的条件下,可在任何生长的作物或贮存的饲料上生长和繁殖。因此,霉菌毒素的威胁无处不在。2.霉菌毒素对消化道的破坏最为明显。整个消化道都可能表现出相应的变化。导致嗉囊炎、食道炎、肌胃炎、腺胃炎、坏死性肠炎、肠粘膜脱落等。
晶面产生衍射的充要条件
d为晶面间距,θ为入射线,反射线与反射晶面之间的夹角,λ为波长,n为反射级数,布拉格方程是X射线在晶体产生衍射时的必要条件而非充分条件。
顺反异构的概念和产生条件
概念同分异构是指分子式相同但结构式不同的异构现象,它包括构造异构和立体异构。立体异构指的是原子或原子团互相连接的次序相同,但在空间的排列方式不同的异构现象。而顺反异构是指空间构象不同,顺反异构属于立体异构,故也属于同分异构。产生条件1.分子中至少有一个键不能自由旋转(否则将变成另外一种分子);2.每
红外光产生的原理
1 红外光的定义红外光是英国科学家赫歇尔1800年在实验室中发现的。它是波长比红光长的电磁波,具有明显的热效应,使人能感觉到而看不见。科学家发现,一定波长的光(可见光或不可见光)照射到某些金属等材料表面时,金属等材料会发射电子流,称为光电效应。红外光,又叫红外线,是波长比可见光要长的电磁波(光),波
红外光产生的原理
1 红外光的定义红外光是英国科学家赫歇尔1800年在实验室中发现的。它是波长比红光长的电磁波,具有明显的热效应,使人能感觉到而看不见。科学家发现,一定波长的光(可见光或不可见光)照射到某些金属等材料表面时,金属等材料会发射电子流,称为光电效应。红外光,又叫红外线,是波长比可见光要长的电磁波(光),波
红外吸收光谱的原理
分子运动有平动,转动,振动和电子运动四种,其中后三种为量子运动。分子从较低的能级E1,吸收一个能量为hv的光子,可以跃迁到较高的能级E2,整个运动过程满足能量守恒定律E2-E1=hv。能级之间相差越小,分子所吸收的光的频率越低,波长越长。 红外吸收光谱是由分子振动和转动跃迁所引起的, 组成
实验室分析方法红外光谱定性分析方法介绍
反映红外光谱特征的是谱带的数目和位置,谱带的形状和谱带的相对强度,并通过这些特征来获得化合物结构信息就是光谱的解析。但至今并没有建立起一套完整的解析图谱的系统方法。早在1958年日本学者岛内武彦曾做过使官能团定性分析系统化的尝试,提出了所谓“八区法”。南京药学院主编的《分析化学》一书中对红外光谱解析
简述原子吸收光谱产生的原理
原理: 当有辐射通过自由原子蒸气,且入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子就要从辐射场中吸收能量,产生共振吸收,电子由基态跃迁到激发态,同时伴随着原子吸收光谱的产生。 区别: 吸收光谱 入射辐射的频率等于原子中的电子由基态跃迁
原子吸收光谱是如何产生的
原子吸收光谱位于光谱的紫外区和可见光区。原子吸收光谱为原子发射光谱的逆过程,即自由态原子吸收其特征波长的光后,基态原子的外层电子被激发跃迁至高能态。因此,原子吸收光谱的谱线同样取决于元素的原子结构,每一种元素都有其特征的原子吸收光谱线。电子从基态激发到最低激发态,称为共振激发,完成这种激发所需的能量
原子吸收光谱是如何产生的
原子吸收光谱位于光谱的紫外区和可见光区。原子吸收光谱为原子发射光谱的逆过程,即自由态原子吸收其特征波长的光后,基态原子的外层电子被激发跃迁至高能态。因此,原子吸收光谱的谱线同样取决于元素的原子结构,每一种元素都有其特征的原子吸收光谱线。电子从基态激发到最低激发态,称为共振激发,完成这种激发所需的能量
原子吸收光谱是如何产生的
原子吸收光谱位于光谱的紫外区和可见光区。原子吸收光谱为原子发射光谱的逆过程,即自由态原子吸收其特征波长的光后,基态原子的外层电子被激发跃迁至高能态。因此,原子吸收光谱的谱线同样取决于元素的原子结构,每一种元素都有其特征的原子吸收光谱线。电子从基态激发到最低激发态,称为共振激发,完成这种激发所需的能量
紫外可见吸收光谱的产生原因
紫外-可见吸收光谱的产生及基本原理2.1物质对光的选择性吸收分子的紫外-可见吸收光谱是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析方法。当某种物质受到光的照射时,物质分子就会与光发生碰撞,其结果是光子的能量传递到了分子上。这样,处于稳定状态的基态分子就会跃迁到不稳定的高能态,即激发态
紫外可见吸收光谱的产生原因
紫外-可见吸收光谱的产生及基本原理2.1物质对光的选择性吸收分子的紫外-可见吸收光谱是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析方法。当某种物质受到光的照射时,物质分子就会与光发生碰撞,其结果是光子的能量传递到了分子上。这样,处于稳定状态的基态分子就会跃迁到不稳定的高能态,即激发态
原子吸收光谱是如何产生的
原子吸收光谱位于光谱的紫外区和可见光区。原子吸收光谱为原子发射光谱的逆过程,即自由态原子吸收其特征波长的光后,基态原子的外层电子被激发跃迁至高能态。因此,原子吸收光谱的谱线同样取决于元素的原子结构,每一种元素都有其特征的原子吸收光谱线。电子从基态激发到最低激发态,称为共振激发,完成这种激发所需的能量
紫外可见吸收光谱的产生原因
紫外-可见吸收光谱的产生及基本原理2.1 物质对光的选择性吸收分子的紫外-可见吸收光谱是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析方法。当某种物质受到光的照射时,物质分子就会与光发生碰撞,其结果是光子的能量传递到了分子上。这样,处于稳定状态的基态分子就会跃迁到不稳定的高能态,即激发
荧光效应荧光产生的原理和条件
第一个必要条件是该物质的分子必须具有能吸收激发光的结构,通常是共轭双键结构;第二个条件是该分子必须具有一定程度的荧光效率。所谓荧光效率是荧光物质吸光后所发射的荧光量子数与吸收的激发光的量子数的比值。荧光产生原理,当紫外光或波长较短的可见光照射到某些物质时,这些物质会发射出各种颜色和不同强度的可见光,
红外光谱是如何产生的
用于测定红外光谱的试样需要满足什么条件1、测定时实验室的温度应在15~30℃,相对湿度应在65%以下,所用电源应配备有稳压装置和接地线。因要严格控制室内的相对湿度,因此红外实验室的面积不要太大,能放得下必须的仪器设备即可,但室内一定要有除湿装置。2、如所用的是单光朿型傅里叶红外分光光度计(目前应用最
七大材料结构分析方法三——红外吸收光谱
对通过某物质的红外射线进行分光,可得到该物质的红外吸收光谱,每种分子都由其结构决定的独有的红外吸收光谱。 常用仪器:傅里叶红外吸收光谱仪傅里叶红外吸收光谱仪 分析原理:任何物质都是由分子和原子组成,而不同的物质构成分子的原子间的结合方式不同。各种不同的结合方式吸收特定波长的红外线。如果用红外
实验室分析方法原子荧光光谱的产生介绍
原子荧光光谱的本质即是以光辐射激发的原子发射光谱。一般情况下,气态自由原子处于基态,当吸收外部光源一定频率的辐射能量后,原子的外层电子由基态跃迁至高能态,即激发态。处于激发态的电子很不稳定,在极短的时间(≈10-8s)内即会自发地释放能量返回到基态。若以辐射的形式释放能量,则所发射的特征光谱即为原子
红外吸收光谱仪定义
色散型红外吸收光谱仪,又称经典红外吸收光谱仪,其构造基本上和紫外-可见分光光度计类似。1800年,英国天文学家赫谢尔(F.W.Herschel)用温度计测量太阳光可见光区内、外温度时,发现红外光以外“黑暗”部分的温度比可见光部分的高,从而意识到在红色光之外还存在有一种肉眼看不见的“光”,因此把它
紫外吸收光谱和红外吸收光谱的异同点
紫外吸收光谱:电子能级间的跃迁红外吸收光谱:振动能级间的跃迁