实验室分析仪器电感耦合等离子体光源的发展历程

ICP-AES(inductively coupled plasma-atomic emission spectrometry)分析技术发展开始于20世纪60年代,至今已发展成为原子发射光谱分析应用最为广泛的光谱分析技术。关于ICP光源的出现,文献上认为1884年W. Hittorf发现高频感应在真空管内产生的辉光,是等离子放电的最初观察。至1942, Babat才实现了常压下的Ar-ICP放电。但是,具有光谱分析意义的发现,应自1961年T.B.Reed设计的三层同心石英管组成的等离子炬管装置,和从切线方向通入冷却气,得到在大气压下类似火焰形状的高频无极放电装置开始,并预示其作为发射光谱分析光源的可能性。至今常规ICP的炬管与T.B.Reed的装置没什么本质区别,而切线方向进气所产生的涡流效应被称为Reed效应,是实现ICP光源稳定放电的重要条件。1962年美国V.A. Fassel Greenfield首次开始ICP-AES......阅读全文

电感耦合等离子体质谱联用仪的功能简介

  1、光路系统无需预热、即开即用  2、检测器必须是专门设计用于ICP-OES分析的高灵敏度背照式固态检测器,无紫外线转换荧光涂层  3、分析软件多任务、多用途,Windows7操作系统,软件操作方便、直观,具有定性、半定量、定量分析功能  4、具有多种干扰校正方法和实时背景扣除功能仪器诊断软件和

简介电感耦合等离子体光谱仪的原理

  高频振荡器发生的高频电流,经过耦合系统连接在位于等离子体发生管上端,铜制内部用水冷却的管状线圈上。石英制成的等离子体发生管内有三个同轴氩气流经通道。冷却气(Ar)通过外部及中间的通道,环绕等离子体起稳定等离子体炬及冷却石英管壁,防止管壁受热熔化的作用。工作气体(Ar)则由中部的石英管道引入,开始

电感耦合等离子体焰炬的特点有哪些

电感耦合等离子体焰炬的特点如下:  (1)工作温度高、同时工作气体为惰性气体,因此原子化条件良好,有利于难熔化合物的分解及元素的激发,对大多数元素有很高的灵敏性。  (2)趋肤效应的存在,稳定性高,自吸现象小,测定的现性范围宽。  (3)电子密度高,碱金属的电离引起的干扰小  (4)无极放电,不存在

电感耦合等离子体的定量分析介绍

电感耦合等离子体(ICP)是由高频电流经感应线圈产生高频电磁场,使工作气体形成等离子体,并呈现火焰状放电(等离子体焰炬),达到10000K的高温,是一个具有良好的蒸发-原子化-激发-电离性能的光谱光源。ICP定量分析方法主要有外标法、标准加入法和内标法:1、外标法。利用标准试样测的常数后,又用该式来

电感耦合等离子体质谱法的测定原理和应用

本法适用于生活饮用水及其水源水中银、铝、砷、硼、钡、铍、钙、镉、钴、铬、铜、铁、钾、锂、镁、锰、钼、钠、镍、铅、锑、硒、锶、锡、钍、铊、钛、铀、钒、锌、汞的测定。ICP-MS由离子源和质谱仪两个主要部分构成。样品溶液经过雾化由载气送入ICP炬焰中,经过蒸发、解离、原子化、电离等过程,转化为带正电荷的

实验室电感耦合等离子体发射光谱仪分光装置

一、平面光栅光谱仪与ICP光源配用的平面光栅光谱仪有两种,水平对称成像的艾伯特法斯梯( Ebert-Fastic)光学系统和切尔尼特纳( CzernyTurner)系统。 1)艾伯特法斯梯平面光栅光谱仪它是顺序扫描型ICP光谱仪常用的一类分光装置。这种装置是1889年首先由 Ebert(艾伯特)提出

实验分析仪器电感耦合等离子体光谱仪应用环境、安全类

1.食具容器、包装材料的成分分析及有害物质分析2.应用于食品卫生重金属含量测试和食品检测分析3.水(污水、饮用水、矿泉水等)中的:有害重金属及阴离子等4.玩具、儿童用品及其包装材料中的:有害重金属(锑、砷、钡、铬、镉、铅、汞等)5.肥料中的重金属及微量元素:砷、汞、铅、隔、铬、锰、铁等6.化妆品、洗

实验分析仪器电感耦合等离子体光谱仪应用医药食品类

1.中西药及其包装材料中的有害重金属、微量元素、有效成分等2. 生物组织中的重金属、微量元素及有机成分3.保健品及生物制品中的有害成分、营养成分等4.食品及其包装材料中的有害物质、重金属、微量元素及其它营养成分

实验分析仪器电感耦合等离子体发射光谱仪矫正方法

电感耦合等离子体发射光谱仪校正的目的是消除环境温度造成的光学系统漂移与机械震动造成的机械位移。通常,在仪器安装调试过程中首先要进行光学系统校正;在仪器正常使用过程中根据环境温度的条件适当进行光学系统校正。 在电感耦合等离子体发射光谱仪仪器中,由于仪器本身有恒温系统,操作人员只要控制仪器达到恒温条件,

ICPMS电感耦合等离子体质谱技术的原理应用与发展简介

ICP-MS电感耦合等离子体质谱技术的原理应用与发展简介电感耦合等离子体质谱技术问世至今已有34年。在这段时间里, ICP - MS 技术以其灵敏、快速扫描以及干扰较少的特点迅速发展成为一种应用广泛且广受好评的分析技术。从各种国际分析化学会议和分析化学期刊上涌现出的学术文章数量不仅可看出ICP -

ICPMS电感耦合等离子体质谱技术的原理应用与发展简介

电感耦合等离子体质谱技术问世至今已有34年。在这段时间里, ICP - MS 技术以其灵敏、快速扫描以及干扰较少的特点迅速发展成为一种应用广泛且广受好评的分析技术。从各种分析化学会议和分析化学期刊上涌现出的学术文章数量不仅可看出ICP - MS技术被高度重视的程度, 同时也可看到该技术的日趋成熟。目

关于电感耦合等离子体质谱仪的更多信息的介绍

  测定超痕量元素和同位素比值的仪器。由等离子体发生器,雾化室,炬管,四极质谱仪和一个快速通道电子倍增管(称为离子探测器或收集器)组成。其工作原理是:雾化器将溶液样品送入等离子体光源,在高温下汽化,解离出离子化气体,通过铜或镍取样锥收集的离子,在低真空约133.322帕压力下形成分子束,再通过1~2

实验室光谱仪器电感耦合等离子体原子/离子荧光光谱

对 ICP-AFS/IFS 研究工作的主要方向是追求被测元素,尤其是难熔金属元素的检出限,使该技术能满足痕量、超痕 量金属元素分析的要求。由于 ICP 优异的高温性能,增加 ICP 的入射功率,可增大待测元素原子的电离度,增加待测元素粒子数密度,因此,ICP-IFS 是解决难熔元素原子荧光光谱测定灵

实验室光谱仪器电感耦合等离子体原子/离子荧光光谱

1、 空心阴极灯的强短脉冲供电电源与 DC-HCL 或 CP-HCL 供电电源相比,HCMP-HCL 供电电源需要进行特殊设计,电源要提供微秒宽度的脉冲,峰值工作电流 一般为几安培,最大可到十几安培。下图所示为强短脉冲电源示意图。强短脉冲供电时,HCL 工作在大电流状态,电流一般为几安培,对个别元素

电感耦合等离子体发射光谱仪类型

进行光谱分析的仪器设备主要由光源、分光系统(光谱仪)及观测系统三部分组成。简单地说,就是把试样引入激发光源,使其原子化、激发和电离,辐射出特征光谱,然后用分光系统使光辐射色散,最后将形成的光谱通过相板或转换为电信号进行强度测量。ICP光谱仪可分为几类,即摄谱仪、多通道光电直读光量计和顺序扫描单色仪。

电感耦合等离子体光谱仪安全操作要求

 电感耦合等离子体光谱仪在现在的行业中应该用非常的广泛,而且因为各种需求的影响,使得电感耦合等离子体光谱仪在不断地提高着性能,为了能够让电感耦合等离子体光谱仪在操作中进行的顺利,要注意以下几点:    电感耦合等离子体光谱仪操作规程    1、确认有足够的氩气用于连续工作(储量≥1瓶)。  2、确认

电感耦合等离子体质谱ICPMS工作原理

电感耦合等离子体质谱ICP-MS技术是80年代发展起来的新的分析测试技术。它以将ICP的高温(8000K)电离特性与四极杆质谱计的灵敏快速扫描的优点相结合而形成一种新型的zui强有力的元素分析、同位素分析和形态分析技术。 该技术提供了极低的检出限、极宽的动态线性范围、谱线简单、干扰少、分析精密度高、

电感耦合等离子体光谱法是什么方法

简单的说:1。把试样配成溶液。2。以一定流量进入ICP光谱仪,在矩管处气化,生成等离子体。此时,各元素粒子中的电子处于跃迁状态。3。等离子体中各元素粒子中的电子开始从跃迁状态回到基态,发射出谱线。4。根据谱线的波长,定性判断元素的种类。根据谱线的强度与标样中谱线的长度对比,定量判断某种元素的含量。

电感耦合等离子体光谱仪安全操作要求

电感耦合等离子体光谱仪操作规程    1、确认有足够的氩气用于连续工作(储量≥1瓶)。  2、确认废液收集桶有足够的空间用于收集废液。  3、打开稳压电源开关,检查电源是否稳定,观察约1分钟。  4、打开氩气并调节分压在0.60—0.65Mpa之间。保证仪器驱气1小时以上。  5、打开计算机。  6

ICPMS电感耦合等离子体质谱仪实用指南

  ICP-MS全称是电感耦合等离子体质谱仪,可以用于物质试样中一个或者多个元素的定性、半定量和定量分析;能测定周期表中90%的元素,特别是对金属元素分析擅长,他和ICP-OES、AAS是化学元素分析的常用的三种仪器,其中ICP-MS的检测限低,可以达到PPT(10的负12次方)级。

电感耦合等离子体光谱仪是什么原理

等离子体(Plasma)一词首先由Langmuir在1929年提出,目前一般指电离度超过0.1%被电离了的气体,这种气体不仅含有中性原子和分子,而且含有大量的电子和离子,且电子和正离子的浓度处于平衡状态,从整体来看是处于中性的。从广义上讲像火焰和电弧的高温部分、火花放电、太阳和恒星表面的电离层等都是

电感耦合等离子体质谱ICPMS工作原理

电感耦合等离子体质谱ICP-MS技术是80年代发展起来的新的分析测试技术。它以将ICP的高温(8000K)电离特性与四极杆质谱计的灵敏快速扫描的优点相结合而形成一种新型的zui强有力的元素分析、同位素分析和形态分析技术。 该技术提供了极低的检出限、极宽的动态线性范围、谱线简单、干扰少、分析精密度高、

PlasmaMS-300电感耦合等离子体质谱仪应用领域

环境分析测试领域PlasmaMS 300针对地表水、废水、土壤、沉积物、大气(废气)中颗粒物、固体废弃物等环境样品中重金属元素分析测试及检测的需求,建立了整体应用方案与分析方法。 地矿样品测试PlasmaMS 300灵敏度高、精度好、抗干扰能力强,是地质样品多元素分析zui强有力的技术。满足了矿物三

电感耦合等离子体光谱仪是什么原理

原理介绍:高频振荡器发生的高频电流,经过耦合系统连接在位于等离子体发生管上端,铜制内部用水冷却的管状线圈上。石英制成的等离子体发生管内有三个同轴氩气流经通道。冷却气(Ar)通过外部及中间的通道,环绕等离子体起稳定等离子体炬及冷却石英管壁,防止管壁受热熔化的作用。工作气体(Ar)则由中部的石英管道引入

高分辨率电感耦合等离子体质谱仪

  高分辨率电感耦合等离子体质谱仪是一种用于物理学、化学、药学、化学工程领域的分析仪器,于2014年10月6日启用。  技术指标  ①灵敏度:>1?109cps/ppm铟;②质量分辨率:300、4,000、10,000三个等级,计算机控制;动态范围:>109,线形范围,自动增益校准;③暗流噪音:

电感耦合等离子体质谱联用仪技术指标

  波长范围:(160~900)nm 化学分辨率:≤0.007nm在200nm处(分辨率和检出限须在相同狭缝获得) 谱线灵活性:可对分析元素的谱线进行定性、半定量和定量分析 内标校正:同时的内标校正,即内标元素和测量元素必须同时曝光 波长校正:要求使用氖灯自动校正,仪器即开即用,无需预热 精密度:测

电感耦合等离子体光谱仪是什么原理

等离子体(Plasma)一词首先由Langmuir在1929年提出,目前一般指电离度超过0.1%被电离了的气体,这种气体不仅含有中性原子和分子,而且含有大量的电子和离子,且电子和正离子的浓度处于平衡状态,从整体来看是处于中性的。从广义上讲像火焰和电弧的高温部分、火花放电、太阳和恒星表面的电离层等都是

电感耦合等离子体发射光谱仪原理

  IPC-OES(Inductively Coupled Plasma-Optical Emission Spectrometer)是指电感耦合等离子体发射光谱仪,可用于地质、环保、化工、生物、医药、食物、冶金、农业等方面样品中70多种金属元素和部分非金属元素的定性、定量分析。  原子发射光谱是指

电感耦合等离子体发射光谱仪简介

  ICP-OES是根据原子的发射光谱特征来进行元素定量的方法,由于在实际的分析过程中需要配置工作曲线,因此元素分析准确性高,检出限低。除以上优点,还具有多元素同时检测、分析速度快、选择性好、试样消耗少等优点。如要获得准确的结果,样品允许的情况下一般建议选用这种方法。需要注意的是这是一种消耗性的方法

电感耦合等离子体光谱仪你了解多少

 高频振荡器发生的高频电流,经过耦合系统连接在位于等离子体发生管上端,铜制内部用水冷却的管状线圈上。石英制成的等离子体发生管内有三个同轴氢气流经通道。冷却气(Ar)通过外部及中间的通道,环绕等离子体起稳定等离子体炬及冷却石英管壁,防止管壁受热熔化的作用。工作气体(Ar)则由中部的石英管道引入,开始工