实验室分析仪器核磁共振中原子核的直观属性

原子核可以看作是带正电荷的质点,或称为点电荷。在所有元素的同位素中,有些原子核不具有自旋,但有些原子核有自旋。具有自旋的原子核是核磁共振研究的对象。......阅读全文

实验室分析仪器液体核磁共振实验操作基本过程

采用脉冲傅里叶变换核磁共振(pulse and Fourier transform NMR)波谱仪可以使所有的磁性原子核同时发生共振,高效率地实现和完成核磁共振过程,与连续波仪器比较,使核磁共振谱图的记录能够在较短的时间内完成。 液体核磁共振实验的基本操作包括样品的准备、检测前仪器的调试、实验参数的

实验室分析仪器核磁共振谱仪数据优化操作

一、H-90°脉冲的测试在测试时,使原子核的磁化矢量翻转90°的脉冲宽度,这时得到的信号最强。测试前先设定照射功率,才能确定90°的脉冲宽度,改变照射功率,90°的脉冲宽度也会改变。我们测定一系列脉冲宽度的图谱,其中得到峰最强的脉冲宽度即为90°脉冲,但是最强峰不明显,所以测180脉冲宽度,这时峰强

实验室分析仪器液体核磁共振实验操作基本过程

采用脉冲傅里叶变换核磁共振(pulse and Fourier transform NMR)波谱仪可以使所有的磁性原子核同时发生共振,高效率地实现和完成核磁共振过程,与连续波仪器比较,使核磁共振谱图的记录能够在较短的时间内完成。 液体核磁共振实验的基本操作包括样品的准备、检测前仪器的调试、实验参数的

实验室分析仪器-核磁共振一维氢谱简介

核磁共振一维氢谱是最常用的测试方法,因为氢谱的测试灵敏度是所有核磁共振谱中最高的,因而最容易测定,仅需要将几毫克样品溶在氘代试剂中,甚至有时不需要氘代试剂,可以直接取一定量的反应液就可以测定,几分钟就可以得到结果,非常方便快捷,所以是经常应用的分析方法,对有机化合物的结构鉴定往往起着举足轻重的作用。

实验室分析仪器核磁共振谱溶剂的用量多少为合适

在定深量筒上都绘有相应线圈的位置及长度,一般只要保证样品的长度比线圈上下各多出3mm 即可,过少会影响自动匀场效果,过多浪费溶剂而且由于稀释了样品,减少了处在线圈中的有效样品量。这种情况下要注意将样品液柱的中心与定深量筒上的线圈中心对齐。

实验室分析仪器核磁共振仪偶合常数的分析与应用

高分辨核磁共振谱仪主要是研究通知磁性核在外磁场作用下产生的微小变化,这些变化来源于核的磁屏蔽,它起因于分子中电子环形运动所产生的次级磁场。而在高分辨NMR实验中所得到的共振信号大多又是裂分谱线。造成裂分谱线分的原因是磁性核之间的自旋——自选相互作用。化学位移和偶合常数是核磁共振波谱中反映化合物结构的

新型核磁共振显微镜灵敏度提高一千倍

  据荷兰莱顿大学官网最新消息,该校研究人员开发出一种新型核磁共振显微镜(NMR),比现有核磁共振显微镜灵敏度高一千倍,能在纳秒尺度观察到铜原子核的弛豫时间,有望为医学诊断和基础物理研究带来更好的观测仪器。    该研究团队发表于最近的科学文献预印本在线数据库网站上的论文指出,为了测试新显微镜的

核磁共振波谱仪概述及应用领域

核磁共振波谱仪其原理主要是:在强磁场中,某些元素的原子核和电子能量本身所具有的磁性,被分裂成两个或两个以上量子化的能级。吸收适当频率的电磁辐射,可在所产生的磁诱导能级之间发生跃迁。在磁场中,这种带核磁性的分子或原子核吸收从低能态向高能态跃迁的两个能级差的能量,会产生共振谱,可用于测定分子中某些原子的

核磁共振波谱仪的应用领域

核磁共振波谱仪其原理主要是:在强磁场中,某些元素的原子核和电子能量本身所具有的磁性,被分裂成两个或两个以上量子化的能级。吸收适当频率的电磁辐射,可在所产生的磁诱导能级之间发生跃迁。在磁场中,这种带核磁性的分子或原子核吸收从低能态向高能态跃迁的两个能级差的能量,会产生共振谱,可用于测定分子中某些原子的

实验室分析仪器核磁共振采集参数与后处理介绍

核磁共振采集参数与后处理核磁共振实验根据观测核的种类和实验目的的不同选择不同的脉冲程序(pulprog),设置不同的实验参数。采样时间(acquisition time,AQT),即每次脉冲激发后,信号接收器的采集时间。核磁共振实验检测得到的是时间域信号,这个信号称为自由感应衰减(FID)信号。FI

实验室分析仪器核测试核磁共振需要多少样品量

不同场强需要的样品量不同,如300兆核磁、分子量是几百的样品,测氢谱大约需要2mg以上的样品,测碳谱大约需要10mg以上。600兆核磁测氢谱大约需要几百微克。

桌面核磁共振波谱仪

核磁共振波谱仪是利用不同元素原子核性质的差异分析物质的磁学式分析仪器。这种仪器广泛用于化合物的结构测定,定量分析和动物学研究等方面。它与紫外、红外、质谱和元素分析等技术配合,是研究测定有机和无机化合物的重要工具。传统的超导核磁共振波谱仪是依赖于高磁场强度,而高度稳定并且高度均匀的强磁场非常难获得。需

细胞的属性特征

  大小  原核细胞直径平均: 1~10μm;  真核细胞直径平均: 3~30μm;  某些不同来源的细胞大小变化很大:  人卵细胞:直径0.1mm;鸵鸟卵细胞:直径5cm;  同类型细胞的体积一般是相近的,不依生物个体的大小而增大或缩小;  器官的大小主要决定于细胞的数量,与细胞的数量成正比,而与

基因的主要属性

基因具有双重属性:物质性(存在方式)和信息性(根本属性)。

细胞的属性特征

  大小  原核细胞直径平均: 1~10μm;  真核细胞直径平均: 3~30μm;  某些不同来源的细胞大小变化很大:  人卵细胞:直径0.1mm;鸵鸟卵细胞:直径5cm;  同类型细胞的体积一般是相近的,不依生物个体的大小而增大或缩小;  器官的大小主要决定于细胞的数量,与细胞的数量成正比,而与

全球首台微型核磁共振波谱仪特点及其应用

  BCEIA 2011期间,北京绿绵科技有限公司在北京展览馆1号会议室召开了用户技术交流会。交流会期间,来自绿绵科技的李卫建工程师向大家介绍了核磁共振波谱仪的特点及其应用。 绿绵科技技术交流会现场 北京绿绵科技有限公司 李卫建 工程师

实验室分析仪器核磁共振谱所需样品管的注意事项

对于5mm 探头来说,其中探头内部隔离样品和线圈的石英管内径只有5.4mm,如果样品管过粗或者弯曲,很容易卡在探头里甚至挤碎石英管;如果样品管过细或者有裂纹,很容易造成样品管在探头内破碎,污染探头。因此在使用样品管前,首先要在平面上滚动,确定平直;然后对灯光仔细检查有无裂纹;插入转子时要注意是否过紧

实验室分析仪器核磁共振氢谱仪的性能和应用介绍

核磁共振氢谱(也称氢谱) 是一种将分子中氢-1的核磁共振效应体现于核磁共振波谱法中的应用。可用来确定分子结构。当样品中含有氢,特别是同位素氢-1的时候,核磁共振氢谱可被用来确定分子的结构。氢-1原子也被称之为氕。简单的氢谱来自于含有样本的溶液。为了避免溶剂中的质子的干扰,制备样本时通常使用氘代溶剂(

实验室分析仪器核磁共振谱仪的性能指标分析

一、分辨率分辨率系指仪器分辨相邻谱线的能力。分辨率越高,谱线越窄,能被分开的两峰间距就越小。一般选用乙醇作标准品,测试仪器分辨率。乙醇的—CHO是一组四重峰,取其高峰的半高宽作为分辨率的指标,如图一所示。一般一起的分辨率在0.1-0.4Hz。图一   乙醇的醛基四重峰二、灵敏度灵敏度又称信噪比,是衡

核磁共振波谱法简介和工作方式

核磁共振波谱法(Nuclear Magnetic Resonance,简写为NMR)是材料表征中*有用的一种仪器测试方法,它与紫外吸收光谱、红外吸收光谱、质谱被人们称为“四谱”,广泛应用于物理学、化学、生物、药学、医学、农业、环境、矿业、材料学等学科,是对各种有机和无机物的成分、结构进行定性分析的*

台式核磁共振波谱仪在本科教学中的应用

核磁共振波谱仪是各大高校科研常用的的分析仪器,但是由于其操作环境的要求,学生能够亲自进行操作分析的机会较少,而台式核磁共振波谱仪轻巧、便携的外形和无需液氮液氦的工作环境使该仪器可以在常规实验室工作,填补了大型核磁共振波谱仪在教学和科研上的空白。例如基础有机化学实验中的酯化反应,需要在化学反应前检查原

实验室分析仪器核磁共振波谱仪维护常见问题探讨

一、核磁共振波谱仪维护常见问题探讨超导磁体是NMR波谱仪中最基本的部分,要长久维持磁体的超导性就必须保证液氦、液氮的持续供应及有效防止铁磁性物体的接近。1、定期加注液氦和液氮对NMR波谱仪维护的首要目的是维持磁体的超导性因而需要维护者定期加注液氦、液氮。与液氦相比液氮产量高、价格低廉,因此需要通过加

实验室分析仪器核磁共振仪化学位移的产生及影响因素

高分辨核磁共振谱仪主要是研究通知磁性核在外磁场作用下产生的微小变化,这些变化来源于核的磁屏蔽,它起因于分子中电子环形运动所产生的次级磁场。而在高分辨NMR实验中所得到的共振信号大多又是裂分谱线。造成裂分谱线分的原因是磁性核之间的自旋——自选相互作用。化学位移和偶合常数是核磁共振波谱中反映化合物结构的

微纳米气泡的直观表征方法

  微纳米气泡因其自身体积小、比表面积大、自身增压溶解等特点,具有广泛的应用价值。但微纳米气泡受气泡发生条件的影响很大,需要依靠准确的检测方法去优化气泡发生条件,检测微纳米气泡的性质。本文借助动态图像法和纳米颗粒跟踪分析技术,分别检测了微米气泡和纳米气泡:通过动态图像法,测得微米气泡的粒径分布、气泡

原料药粒度在制剂开发中的关键物料属性

  原料药粒度作为制剂开发中的关键物料属性,不仅影响原料药的粉体学性质(如流动性),制剂含量均匀度,原料药及制剂的化学稳定性,还影响着制剂的溶出,进而影响到制剂在人体中的释放与吸收,最终药物制剂的生物利用度及药物疗效的发挥。ICH Q6A中所绘制的决策树为原料药粒度标准指定提供了方向。  粒度与溶出

成体干细胞的属性

干细胞具有两种属性:自我更新,其是经历多个细胞分裂周期同时仍保持其未分化状态的能力。多分化能性(multipotency ),其是产生几种不同细胞类型(例如神经胶质细胞和神经元)的后代的能力,而不是单能性(Unipotency),这是限于产生单一细胞类型的细胞的术语。然而,一些研究人员不认为多分化能

实验室分析仪器核磁共振谱仪磁铁与能产生磁场分析

静磁场(或称恒定磁场)是核磁共振实验的必要条件之一,因此用来产生静磁场的磁体是各类核磁共振波谱仪的必备部件。一、静磁场与核磁共振波谱仪性能的关系1、磁场强度高,则灵敏度好。 理论和实验表明,NMR信号强度正比于磁场强度的平方,二噪声比正比于磁场强度的1/2。2、仪器的分辨率主要取决于静磁场的均匀性。

实验室分析仪器核磁共振技术在高分子化的应用

核磁共振技术在高分子聚合物和合成橡胶中的应用包括共混及三元共聚物的定性、定量分析、异构体的鉴别;端基表征;官能团鉴别;均聚物立规性分析;序列分布及等等规度的分析等。液体高分辨核磁共振可以提供聚合物的信息有: (1)聚合物类型的鉴定,不同单体生成的聚合物,虽然同为大分子碳氢化合物,但其共振谱是不完全相

实验室分析仪器核磁共振谱仪的操作方法及数据处理

一、放置样品防止样品前,要做好样品的准备工作。首先要有足够的样品量,一般300兆赫磁测氢谱需要2—100mg,500兆赫磁测氢谱需要0.5mg以上,因为碳谱灵敏度更低,需要的样品量更大。有了足够的样品量还要选好适当的溶剂,使样品完全溶解,才能得到更好的图谱。如果用5mm的样品管,氚代溶剂要使液面高度

核磁共振波谱法简介和其工作原理

核磁共振(nuclear magnetic resonance ; NMR )现象是1946 年由美国斯坦福大学的F . Bloch 等人和哈佛大学的E . M . Purcell等人各自独立发现的,Bloch 和Purcell 因此获得了1952 年诺贝尔物理学奖。40 多年来,核磁共振不仅形成为