关于三羧酸循环的基本介绍

柠檬酸循环(citric acid cycle):也称为三羧酸循环(tricarboxylic acid cycle,TCA循环,TCA),Krebs循环。是用于将乙酰CoA中的乙酰基氧化成二氧化碳和还原当量的酶促反应的循环系统,该循环的第一步是由乙酰CoA与草酰乙酸缩合形成柠檬酸。反应物乙酰辅酶A(Acetyl-CoA)(一分子辅酶A和一个乙酰相连)是糖类、脂类、氨基酸代谢的共同的中间产物,进入循环后会被分解最终生成产物二氧化碳并产生H,H将传递给辅酶I--尼克酰胺腺嘌呤二核苷酸(NAD+) (或者叫烟酰胺腺嘌呤二核苷酸)和黄素腺嘌呤二核苷酸(FAD),使之成为NADH + H+和FADH2。 NADH + H+ 和 FADH2 携带H进入呼吸链,呼吸链将电子传递给O2产生水,同时偶联氧化磷酸化产生ATP,提供能量。 真核生物的线粒体基质和原核生物的细胞质是三羧酸循环的场所。它是呼吸作用过程中的一步,之后高能电子在NAH......阅读全文

三羧酸循环的概念和方式

三羧酸循环(tricarboxylic acid cycle)是由Hans Adolf Krebs于1937年首先提出,故又称为Krebs循环(尿素循环也是Krebs提出的)。此循环是从活性二碳化合物—乙酰辅酶A和四碳草酰乙酸在线粒体内缩合成含三个羧基的柠檬酸开始,经过一系列脱氢脱羧反应,最后重新生

简述三羧酸循环的生理意义

  1、为机体提供能量:每摩尔葡萄糖彻底氧化成H2O和CO2时,净生成30mol或32mol(糖原则生成31~ 33mol)ATP。因此在一般生理条件下,各种组织细胞(除红细胞外)皆从糖的有氧氧化获得能量。糖的有氧氧化不但产能效率高,而且逐步释能,并逐步储存于ATP分子中,因此能的利用率也极高。  

简述三羧酸循环的发现过程

  克雷布斯博士在第二次世界大战爆发期间因受到纳粹的迫害,不得不逃往英国。虽然在德国,他是位非常优秀的医生,但是在英国,由于没有行医许可证,得不到社会的承认,他只能转而从事基础医学的研究。  刚开始选择课题时,仅仅因为他对食物在体内究竟是如何变成水和二氧化碳这一课题充满了兴趣,他便毫不犹豫地选择了这

三磷酸循环和三羧酸循环是一样的吗

柠檬酸循环(tricarboxylicacidcycle):也称为三羧酸循环(tricarboxylicacidcycle,TCA),Krebs循环。是用于将乙酰CoA中的乙酰基氧化成二氧化碳和还原当量的酶促反应的循环系统,该循环的第一步是由乙酰CoA与草酰乙酸缩合形成柠檬酸。反应物乙酰辅酶A(ce

三羧酸循环的生物学意义

  TCA的生物学意义可以分为两方面论述,1.能量代谢 2.物质代谢  1.三羧酸循环是机体将糖或其他物质氧化而获得能量的最有效方式。在糖代谢中,糖经此途径氧化产生的能量最多。毎分子葡萄糖经有氧氧化生成H2O和CO2时,可净产生32分子ATP或30分子ATP。  2.三羧酸循环是糖、脂,蛋白质,甚至

三羧酸循环的生物学意义

TCA的生物学意义可以分为两方面论述,1.能量代谢 2.物质代谢1、三羧酸循环是机体将糖或其他物质氧化而获得能量的最有效方式。在糖代谢中,糖经此途径氧化产生的能量最多。毎分子葡萄糖经有氧氧化生成H2O和CO2时,可净产生32分子ATP或30分子ATP。2、三羧酸循环是糖、脂,蛋白质,甚至核酸代谢,联

三羧酸循环的生物学意义

TCA的生物学意义可以分为两方面论述,1.能量代谢 2.物质代谢1、三羧酸循环是机体将糖或其他物质氧化而获得能量的最有效方式。在糖代谢中,糖经此途径氧化产生的能量最多。毎分子葡萄糖经有氧氧化生成H2O和CO2时,可净产生32分子ATP或30分子ATP。2、三羧酸循环是糖、脂,蛋白质,甚至核酸代谢,联

简述三羧酸循环的催化反应

  在三羧酸循环中此酶催化的反应为:  α-酮戊二酸+NAD+ + 辅酶A → 琥珀酰辅酶A + 二氧化碳+ NADH  酮戊二酸脱氢酶(α-酮戊二酸脱氢酶)  进行此反应需要以下三步骤:  α-酮戊二酸的脱羧反应,  NAD到NADH的氧化还原反应,  中间产物随后被转移到辅酶A,形成了最终产物,

关于羧酸的基本内容介绍

  羧酸的官能团是羧基,除甲酸外,都是由烃基和羧基两部分组成。根据烃基的结构不同,分为脂肪酸和芳香酸。  羧基与脂肪烃基相连结者,称为脂肪酸;脂肪酸又根据烃基的不饱和度分为饱和脂肪酸和不饱和脂肪酸。若脂肪烃基中不含有不饱和键,则称为饱和脂肪酸;若脂肪烃基中含有不饱和键,则称为不饱和脂肪酸。羧基与芳香

三羧酸循环的发生的化学反应

乙酰辅酶A在循环中出现:柠檬酸(I)是循环中第一个产物,它是通过草酰乙酸(X)和乙酰辅酶A(XI)的乙酰基间的缩合反应生成的。如上所述,乙酰辅酶A是早先进行的糖酵解,氨基酸降解或脂肪酸氧化的一个产物。

琥珀酸脱氢酶线粒体三羧酸循环介绍

  琥珀酸脱氢酶(Succinate dehydrogenase,简称SDH),黄素酶类,是线粒体内膜的结合酶,属膜结合酶,是连接氧化磷酸化与电子传递的枢纽之一,可为真核细胞线粒体和多种原核细胞需氧和产能的呼吸链提供电子,为线粒体的一种标志酶。琥珀酸脱氢酶是反映线粒体功能的标志酶(markerenz

三羧酸循环的总化学反应式介绍

  反应式  Acetyl-CoA + 3 NAD + FAD + GDP + Pi+ 2 H2O →CoA-SH + 3 NADH + 3 H + FADH2+ GTP + 2 CO2  值得注意的是,CO2的两个C并不来源于乙酰CoA,而是OAA。  原理  两个碳原子以CO2的形式离开循环。循

三羧酸循环的调节作用如何体现?

糖有氧氧化分为两个阶段,第一阶段糖酵解途径的调节在糖酵解部分已探讨过,下面主要讨论第二阶段丙酮酸氧化脱羧生成乙酰-CoA并进入三羧酸循环的一系列反应的调节。丙酮酸脱氢酶复合体、柠檬酸合成酶、异柠檬酸脱氢酶和α-酮戊二酸脱氢酶复合体是这一过程的限速酶。丙酮酸脱氢酶复合体受别构调控也受化学修饰调控,该酶

糖酵解途径和三羧酸循环途径的异同

一、关系不同:糖的分解代谢途径有3种:糖酵解(EMP)、戊糖磷酸途径(PPP)和三羧酸循环(TCA)。EMP和PPP的产物是TCA的基础,同时EMP和PPP之间形成互补关系。二、作用不同:糖酵解的产物丙酮酸可以在丙酮酸脱氢酶复合物的作用下生成乙酰辅酶A,进入三羧酸循环。糖酵解和三羧酸循环的中产物可以

三羧酸循环4次脱氢反应的酶是什么

异柠檬酸脱氢酶、α-酮戊二酸脱氢酶(系)、琥珀酸脱氢酶、苹果酸脱氢酶

糖酵解和三羧酸循环的生物学意义

一、糖酵解的生物学意义:糖酵解途径指糖原或葡萄糖分子分解至生成丙酮酸的阶段,此反应过程一般在无氧条件下进行,又称为无氧分解。其生物学意义在于为生物体提供一定的能量,糖酵解的中间物为生物合成提供原料,是某些特殊细胞在氧供应正常情况下的重要获能途径。二、三羧酸循环的生物学意义1.三羧酸循环是机体获取能量

关于尿素循环的基本介绍

  氨基酸在体内代谢时,产生的氨,经过鸟氨酸再合成尿素的过程称为鸟氨酸循环(Ornithine cycle) ,又称尿素循环(urea cycle)。当氨基酸代谢的最终产物——氨在体内浓度甚高时对细胞有剧毒,小部分氨可重新合成氨基酸及其他含氮化合物,绝大部分氨则通过鸟氨酸循环合成尿素,随尿排出,以解

关于酸性萃取剂羧酸的基本信息介绍

  羧酸是一类重要的酸性萃取剂,由于分子间产生缔合作用,通常以二聚体形式存在。因K2是二聚反应产生的常数,故称为二聚常数。羧酸通常都是弱酸,其酸性小于一般无机酸而大于碳酸,它可与碱反应生成羧酸盐(金属皂)。随着水溶液的pH值升高,羧酸在水中的溶解度增大,萃取时羧酸与金属离子进行阳离子交换反应。

关于羧酸的分类介绍

  通式RCOOH中R为脂烃基或芳烃基,分别称为脂肪(族)酸或芳香(族)酸。又可根据羧基的数目分为一元酸、二元酸与多元酸。还可以分为饱和酸和不饱和酸。  呈酸性,与碱反应生成盐。一般与三氯化磷反应成酰氯;用五氧化二磷脱水,生成酸酐;在酸催化下与醇反应生成酯;与氨反应生成酰胺;用四氢化锂铝(LiAlH

关于鸟氨酸循环的基本介绍

  氨基酸在体内代谢时,产生的氨,经过鸟氨酸再合成尿素的过程称为鸟氨酸循环(Ornithine cycle) ,又称尿素循环(urea cycle)。当氨基酸代谢的最终产物——氨在体内浓度甚高时对细胞有剧毒,小部分氨可重新合成氨基酸及其他含氮化合物,绝大部分氨则通过鸟氨酸循环合成尿素,随尿排出,以解

三羧酸循环的总化学反应式和原理

反应式Acetyl-CoA + 3 NAD+ + FAD + GDP + Pi + 3 H2O →CoA-SH + 3 NADH + 3 H+ + FADH2 + GTP + 2 CO2值得注意的是,CO2的两个C并不来源于乙酰CoA,而是OAA。原理两个碳原子以CO2的形式离开循环。循环最后草酰乙

糖酵解-三羧酸循环-磷酸戊糖途径之间有何联系

糖酵解和三羧酸循环是共同通路(语死早不知道怎么说好)然后磷酸戊糖途径和糖酵解共用了g(葡萄糖)→g-6-p(6-磷酸葡萄糖/葡萄糖-6磷酸)的途径糖酵解和三羧酸循环产生的还原当量(fadh₂、nadh)会进入呼吸链,经过氧化磷酸化,产生atp和水。

关于胎儿血液循环的基本介绍

  在胎盘中饱和氧气的动脉血经脐静脉,一支到肝脏与门静脉吻合后经肝静脉至下腔静脉,一支直接经静脉导管流入下腔静脉。含有混合血的下腔静脉,到右心房以后1/3~1/2经卵圆孔注入左心房,而上腔静脉的血几乎完全由右心房进入右心室,右心室的血流入肺动脉,只有少量流到肺,大部分经动脉导管进入降主动脉,流到全身

关于葡糖丙氨酸循环的基本介绍

  对于哺乳动物来说,尽管氨基酸的氨基转移反应主要发生在肝脏,但在肌肉中也可以进行。糖酵解是肌肉运动的重要能量来源。如图13-6所示,在肌肉中,葡萄糖发生糖酵解产生丙酮酸,丙酮酸除了形成乳酸外,还通过a-氨基酸的转氨作用生成丙氨酸;丙氨酸随着血液进入肝脏进行脱氨处理,游离氨借助尿素循环被排除;在肝细

关于肠肝循环的基本信息介绍

  肝肠循环(enterohepaticcirculation)指经胆汁或部分经胆汁排入肠道的药物,在肠道中又重新被吸收,经门静脉又返回肝脏的现象。此现象主要发生在经胆汁排泄的药物中,有些由胆汁排入肠道的原型药物如毒毛旋花子苷G,极性高,很少能再从肠道吸收,而大部分从粪便排出。

关于氮循环的基本信息介绍

  氮循环(Nitrogen Cycle)是描述自然界中氮单质和含氮化合物之间相互转换过程的生态系统的物质循环。  氮循环是全球生物地球化学循环的重要组成部分,全球每年通过人类活动新增的“活性”氮导致全球氮循环严重失衡,并引起水体的富营养化、水体酸化、温室气体排放等一系列环境问题。

关于微循环衰竭的基本信息介绍

  微循环衰竭主要是由人体的休克(Shock)引起的。  人体在休克的状态下,全身有效血流量减少,微循环出现障碍,会导致重要的生命器官缺血缺氧。  休克(Shock)指的是一急性的综合症。在这种状态下,全身有效血流量减少,微循环出现障碍,导致重要的生命器官缺血缺氧。即是身体器官需氧量与得氧量失调。休

关于柠檬酸循环的基本介绍

  三羧酸循环(tricarboxylic acid cycle,TCA cycle)是需氧生物体内普遍存在的代谢途径。原核生物中分布于细胞质,真核生物中分布在线粒体。因为在这个循环中几个主要的中间代谢物是含有三个羧基的有机酸,例如柠檬酸(C6),所以叫做三羧酸循环,又称为柠檬酸循环(citric

关于甲皱微循环检查的基本介绍

  微循环是完成循环系统基本职能的最小功能单位,其形态和机能状态的变化与整个机体,尤其是循环系统的功能有密切的关系。临床上人体外周微循环检查的部位较多,甲皱、球结膜、舌、口唇、齿龈、口腔黏膜、皮肤等处均可采用,其中以手指甲皱部位微循环检查最为常用。检查设备和条件观察甲皱微循环只要有显微镜和光源即可。

Science:发现一种最原始的三羧酸循环-揭示早期生命起源

  一项针对从琉球海槽南部(Southern Okinawa Trough)的一个热液田(hydrothermal field)中分离出来的热硫化物杆菌(Thermosulfidibacter)的多组学研究使得发现最为原始的三羧酸(TCA)循环成为可能。相关研究结果发表在2018年2月2日的Scie